Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2018_1_a6, author = {E. E. Sokol}, title = {Introduction of the {Kullback} {\textendash} {Leibler} information function by means of partitions of the probability space}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {59--67}, publisher = {mathdoc}, volume = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a6/} }
TY - JOUR AU - E. E. Sokol TI - Introduction of the Kullback – Leibler information function by means of partitions of the probability space JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2018 SP - 59 EP - 67 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a6/ LA - ru ID - BGUMI_2018_1_a6 ER -
%0 Journal Article %A E. E. Sokol %T Introduction of the Kullback – Leibler information function by means of partitions of the probability space %J Journal of the Belarusian State University. Mathematics and Informatics %D 2018 %P 59-67 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a6/ %G ru %F BGUMI_2018_1_a6
E. E. Sokol. Introduction of the Kullback – Leibler information function by means of partitions of the probability space. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 59-67. http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a6/
[1] A. A. Borovkov, “Matematicheskaya statistika: Otsenka parametrov. Proverka gipotez”, Nauka, 1984 | MR
[2] V. I. Bakhtin, “On t-entropy and variational principle for the spectral radius of weighted shift operators”, Ergod. Theory Dyn. Syst, 30 (2010), 1331–1342 | DOI | MR | Zbl
[3] A. B. Antonevich, V. I. Bakhtin, A. V. Lebedev, “On t-entropy and variational principle for the spectral radii of transfer and weighted shift operators”, Ergod. Theory Dyn. Syst, 31 (2011), 995–1042 | DOI | MR | Zbl
[4] A. B. Antonevich, V. I. Bakhtin, A. V. Lebedev, “A road to the spectral radius of transfer operators”, Contemp. Math, 567 (2012), 17–51 | DOI | MR | Zbl
[5] V. I. Bakhtin, “Spektralnyi potentsial, deistvie Kulbaka i printsip bolshikh uklonenii dlya konechno-additivnykh mer”, Tr. In-ta matematiki NAN Belarusi, 24(1) (2015), 1–13
[6] V. Bakhtin, E. Sokal, “The Kullback – Leibler Information Function For Infinite Measures”, Entropy, 18 (2016) | DOI | Zbl