Introduction of the Kullback – Leibler information function by means of partitions of the probability space
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 59-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we study the equivalence problem of two definitions of the Kullback – Leibler information function. It is commonly defined by integration of the logarithm of the density of one probability measure with respect to another. On the other hand, recently a concept of $t$-entropy of a dynamical system (that is a generalization of the information function) is actively explored, and this concept is defined by means of measurable partitions of the phase space. In the paper we investigate in which situations the two definitions are equivalent and in which ones they are not. In particular, the equivalence holds if both measures are finite.
Keywords: Kullback – Leibler information function; $t$-entropy.
@article{BGUMI_2018_1_a6,
     author = {E. E. Sokol},
     title = {Introduction of the {Kullback} {\textendash} {Leibler} information function by means of partitions of the probability space},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {59--67},
     publisher = {mathdoc},
     volume = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a6/}
}
TY  - JOUR
AU  - E. E. Sokol
TI  - Introduction of the Kullback – Leibler information function by means of partitions of the probability space
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2018
SP  - 59
EP  - 67
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a6/
LA  - ru
ID  - BGUMI_2018_1_a6
ER  - 
%0 Journal Article
%A E. E. Sokol
%T Introduction of the Kullback – Leibler information function by means of partitions of the probability space
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2018
%P 59-67
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a6/
%G ru
%F BGUMI_2018_1_a6
E. E. Sokol. Introduction of the Kullback – Leibler information function by means of partitions of the probability space. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 59-67. http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a6/

[1] A. A. Borovkov, “Matematicheskaya statistika: Otsenka parametrov. Proverka gipotez”, Nauka, 1984 | MR

[2] V. I. Bakhtin, “On t-entropy and variational principle for the spectral radius of weighted shift operators”, Ergod. Theory Dyn. Syst, 30 (2010), 1331–1342 | DOI | MR | Zbl

[3] A. B. Antonevich, V. I. Bakhtin, A. V. Lebedev, “On t-entropy and variational principle for the spectral radii of transfer and weighted shift operators”, Ergod. Theory Dyn. Syst, 31 (2011), 995–1042 | DOI | MR | Zbl

[4] A. B. Antonevich, V. I. Bakhtin, A. V. Lebedev, “A road to the spectral radius of transfer operators”, Contemp. Math, 567 (2012), 17–51 | DOI | MR | Zbl

[5] V. I. Bakhtin, “Spektralnyi potentsial, deistvie Kulbaka i printsip bolshikh uklonenii dlya konechno-additivnykh mer”, Tr. In-ta matematiki NAN Belarusi, 24(1) (2015), 1–13

[6] V. Bakhtin, E. Sokal, “The Kullback – Leibler Information Function For Infinite Measures”, Entropy, 18 (2016) | DOI | Zbl