Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2018_1_a2, author = {S. A. Spaskov and Khmyzov Anton K.}, title = {Boundary value problem for system of finite-difference with averaging equations}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {17--28}, publisher = {mathdoc}, volume = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a2/} }
TY - JOUR AU - S. A. Spaskov AU - Khmyzov Anton K. TI - Boundary value problem for system of finite-difference with averaging equations JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2018 SP - 17 EP - 28 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a2/ LA - ru ID - BGUMI_2018_1_a2 ER -
%0 Journal Article %A S. A. Spaskov %A Khmyzov Anton K. %T Boundary value problem for system of finite-difference with averaging equations %J Journal of the Belarusian State University. Mathematics and Informatics %D 2018 %P 17-28 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a2/ %G ru %F BGUMI_2018_1_a2
S. A. Spaskov; Khmyzov Anton K. Boundary value problem for system of finite-difference with averaging equations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 17-28. http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a2/
[1] P. S. Das, R. R. Sharma, “Existence and stability of measure differential equations”, Czech. Math, 22(1) (1972), 145–158 | DOI | MR | Zbl
[2] S. T. Zavalischin, A. N. Sesekin, “Impulsnye protsessy: modeli i prilozheniya”, Nauka, 1991 | MR
[3] P. Antosik, Ya. Mikusinskii, R. Sikorskii, “Teoriya obobschennykh funktsii: sekventsialnyi podkhod”, Mir, 1976 | Zbl
[4] J. F. Colombeau, “New generalized functions and multiplication of distributions”, Amsterdam : North-Holland Publ. Co., 1984 | MR
[5] N. V. Lazakovich, “Stokhasticheskie differentsialy v algebre obobschennykh sluchainykh protsessov”, Doklady AN Belarusi, 38(5) (1994), 23–27 | MR | Zbl
[6] A. Yablonski, “Differential equations with generalized coefficients”, Nonlinear Anal, 63(2) (2005), 171–197 | DOI | MR | Zbl
[7] N. V. Lazakovich, O. L. Yablonskii, A. K. Khmyzov, “Sistemy differentsialnykh uravnenii s obobschennymi koeffitsientami v pryamom proizvedenii algebr mnemofunktsii”, Doklady NAN Belarusi, 55(2) (2011), 5–9 | Zbl
[8] V. S. Vladimirov, “Uravneniya matematicheskoi fiziki”, Nauka, 1981 | MR
[9] L. Hormander, “The analysis of linear partial differential operators I, Grundlehren der Mathematischen Wissenschaft”, Berlin; Heidelberg: Springer-Verlag, 2003 | MR
[10] A. Ben-Israel, N. E. Greville-Thomas, “Generalized inverses: Theory and applications”, New York: Springer-Verlag, 2003 | MR
[11] T. S. Avtushko, N. V. Lazakovich, A. Yu. Rusetskii, “Zadacha Koshi dlya lineinykh neodnorodnykh differentsialnykh uravnenii vtorogo poryadka s obobschennymi koeffitsientami v algebre mnemofunktsii”, Vestsi NAN Belarusi. Seryya fizika-matematychnykh navuk, 3 (2013), 83–92