Boundary value problem for system of finite-difference with averaging equations
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 17-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary value problem for the system of linear nonhomogeneous differential equations with generalized coefficients is considered $$ \begin{cases} \dot{X}(t)=\dot{L}(t)X(t)+\dot{F}(t), \\ M_{1}X(0)+M_{2}X(b)=Q, \end{cases} $$ where $t\in T=[0,b], L:T\rightarrow \mathbb{R}^{p\times p}$ и $F:T\rightarrow \mathbb{R}^{p}$ are right-continuous matrix and vector valued functions of bounded variation; $M_{1}, M_{2}\in \mathbb{R}^{p\times p}, Q\in \mathbb{R}^{p}$ are defined matrices and vector. The problem is investigated with the help of the corresponding finite-difference with averaging equation behavior studying. The definition of the fundamental matrix, corresponding to the finite-difference with averaging equation is introduced. The theorem of the existence and uniqueness of the finite-difference with averaging boundary value problem, corresponding to the described system is proved.
Keywords: system of linear nonhomogeneous differential equations; boundary value problem; finite-difference with averaging equations; fundamental matrix.
@article{BGUMI_2018_1_a2,
     author = {S. A. Spaskov and Khmyzov Anton K.},
     title = {Boundary value problem for system of finite-difference with averaging equations},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {17--28},
     publisher = {mathdoc},
     volume = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a2/}
}
TY  - JOUR
AU  - S. A. Spaskov
AU  - Khmyzov Anton K.
TI  - Boundary value problem for system of finite-difference with averaging equations
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2018
SP  - 17
EP  - 28
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a2/
LA  - ru
ID  - BGUMI_2018_1_a2
ER  - 
%0 Journal Article
%A S. A. Spaskov
%A Khmyzov Anton K.
%T Boundary value problem for system of finite-difference with averaging equations
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2018
%P 17-28
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a2/
%G ru
%F BGUMI_2018_1_a2
S. A. Spaskov; Khmyzov Anton K. Boundary value problem for system of finite-difference with averaging equations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2018), pp. 17-28. http://geodesic.mathdoc.fr/item/BGUMI_2018_1_a2/

[1] P. S. Das, R. R. Sharma, “Existence and stability of measure differential equations”, Czech. Math, 22(1) (1972), 145–158 | DOI | MR | Zbl

[2] S. T. Zavalischin, A. N. Sesekin, “Impulsnye protsessy: modeli i prilozheniya”, Nauka, 1991 | MR

[3] P. Antosik, Ya. Mikusinskii, R. Sikorskii, “Teoriya obobschennykh funktsii: sekventsialnyi podkhod”, Mir, 1976 | Zbl

[4] J. F. Colombeau, “New generalized functions and multiplication of distributions”, Amsterdam : North-Holland Publ. Co., 1984 | MR

[5] N. V. Lazakovich, “Stokhasticheskie differentsialy v algebre obobschennykh sluchainykh protsessov”, Doklady AN Belarusi, 38(5) (1994), 23–27 | MR | Zbl

[6] A. Yablonski, “Differential equations with generalized coefficients”, Nonlinear Anal, 63(2) (2005), 171–197 | DOI | MR | Zbl

[7] N. V. Lazakovich, O. L. Yablonskii, A. K. Khmyzov, “Sistemy differentsialnykh uravnenii s obobschennymi koeffitsientami v pryamom proizvedenii algebr mnemofunktsii”, Doklady NAN Belarusi, 55(2) (2011), 5–9 | Zbl

[8] V. S. Vladimirov, “Uravneniya matematicheskoi fiziki”, Nauka, 1981 | MR

[9] L. Hormander, “The analysis of linear partial differential operators I, Grundlehren der Mathematischen Wissenschaft”, Berlin; Heidelberg: Springer-Verlag, 2003 | MR

[10] A. Ben-Israel, N. E. Greville-Thomas, “Generalized inverses: Theory and applications”, New York: Springer-Verlag, 2003 | MR

[11] T. S. Avtushko, N. V. Lazakovich, A. Yu. Rusetskii, “Zadacha Koshi dlya lineinykh neodnorodnykh differentsialnykh uravnenii vtorogo poryadka s obobschennymi koeffitsientami v algebre mnemofunktsii”, Vestsi NAN Belarusi. Seryya fizika-matematychnykh navuk, 3 (2013), 83–92