Reciprocal Convolution Sums of Bernoulli and Euler Polynomials
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 47 (2022) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
By inroducing two weight factors, we examine convolution sums
about Bernoulli and Euler polynomials. Several reciprocal
formulae are established, including polynomial extensions
of Miki's well--known identity on Bernoulli numbers.
@article{BASS_2022_47_1_a2,
author = {Wenchang Chu},
title = {Reciprocal {Convolution} {Sums} of {Bernoulli} and {Euler} {Polynomials}},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {29 - 53},
year = {2022},
volume = {47},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BASS_2022_47_1_a2/}
}
TY - JOUR AU - Wenchang Chu TI - Reciprocal Convolution Sums of Bernoulli and Euler Polynomials JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2022 SP - 29 EP - 53 VL - 47 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2022_47_1_a2/ ID - BASS_2022_47_1_a2 ER -
%0 Journal Article %A Wenchang Chu %T Reciprocal Convolution Sums of Bernoulli and Euler Polynomials %J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles %D 2022 %P 29 - 53 %V 47 %N 1 %U http://geodesic.mathdoc.fr/item/BASS_2022_47_1_a2/ %F BASS_2022_47_1_a2
Wenchang Chu. Reciprocal Convolution Sums of Bernoulli and Euler Polynomials. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 47 (2022) no. 1. http://geodesic.mathdoc.fr/item/BASS_2022_47_1_a2/