Boundary values, integral transforms, and growth of vector valued Hardy functions
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 46 (2021), p. 115
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Banach space valued Hardy functions $H^{p}, \; 0 p \leq \infty,$ are defined with the functions having domain in tubes $T^{C} = \mathbb{R}^{n}+\I C \subset \mathbb{C}^{n}$; $H^{2}$ functions with values in Hilbert space are characterized as Fourier-Laplace transforms of functions which satisfy a certain norm growth property. These $H^{2}$ functions are shown to equal a Cauchy integral when the base $C$ of the tube $T^{C}$ is specialized. For certain Banach spaces and certain bases $C$ of the tube $T^{C}$, all $H^{p}$ functions, \; $1 \leq p \leq \infty$, are shown to equal the Poisson integral of $L^{p}$ functions, have boundary values in $L^{p}$ norm on the distinguished boundary $\mathbb{R}^{n}+\I \{ \overline{0} \}$ of the tube $T^{C}$, and have pointwise growth properties. For $H^{2}$ functions with values in Hilbert space we show the existence of $L^{2}$ boundary values on the topological boundary $\mathbb{R}^{n}+\I\, \partial C$ of the tube $T^{C}$.
Classification :
32A26, 32A35, 32A40, 42B30
Keywords: Hardy functions, vector valued analytic functions, integral transforms, boundary values in $L^{p}$ norm
Keywords: Hardy functions, vector valued analytic functions, integral transforms, boundary values in $L^{p}$ norm
@article{BASS_2021_46_a6,
author = {Richard D. Carmichael and Stevan Pilipovi\'c and Jasson Vindas},
title = {Boundary values, integral transforms, and growth of vector valued {Hardy} functions},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {115 },
year = {2021},
volume = {46},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASS_2021_46_a6/}
}
TY - JOUR AU - Richard D. Carmichael AU - Stevan Pilipović AU - Jasson Vindas TI - Boundary values, integral transforms, and growth of vector valued Hardy functions JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2021 SP - 115 VL - 46 UR - http://geodesic.mathdoc.fr/item/BASS_2021_46_a6/ LA - en ID - BASS_2021_46_a6 ER -
%0 Journal Article %A Richard D. Carmichael %A Stevan Pilipović %A Jasson Vindas %T Boundary values, integral transforms, and growth of vector valued Hardy functions %J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles %D 2021 %P 115 %V 46 %U http://geodesic.mathdoc.fr/item/BASS_2021_46_a6/ %G en %F BASS_2021_46_a6
Richard D. Carmichael; Stevan Pilipović; Jasson Vindas. Boundary values, integral transforms, and growth of vector valued Hardy functions. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 46 (2021), p. 115 . http://geodesic.mathdoc.fr/item/BASS_2021_46_a6/