Boundary values, integral transforms, and growth of vector valued Hardy functions
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 46 (2021) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Banach space valued Hardy functions $H^{p}, \; 0 p \leq \infty,$ are defined with the functions having domain in tubes $T^{C} = \mathbb{R}^{n}+\I C \subset \mathbb{C}^{n}$; $H^{2}$ functions with values in Hilbert space are characterized as Fourier-Laplace transforms of functions which satisfy a certain norm growth property. These $H^{2}$ functions are shown to equal a Cauchy integral when the base $C$ of the tube $T^{C}$ is specialized. For certain Banach spaces and certain bases $C$ of the tube $T^{C}$, all $H^{p}$ functions, \; $1 \leq p \leq \infty$, are shown to equal the Poisson integral of $L^{p}$ functions, have boundary values in $L^{p}$ norm on the distinguished boundary $\mathbb{R}^{n}+\I \{ \overline{0} \}$ of the tube $T^{C}$, and have pointwise growth properties. For $H^{2}$ functions with values in Hilbert space we show the existence of $L^{2}$ boundary values on the topological boundary $\mathbb{R}^{n}+\I\, \partial C$ of the tube $T^{C}$.
@article{BASS_2021_46_1_a6,
     author = {Richard D. Carmichael and Stevan Pilipovi\'c and Jasson Vindas},
     title = {Boundary values, integral transforms, and growth of vector valued {Hardy} functions},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {115 - 129},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2021},
     url = {http://geodesic.mathdoc.fr/item/BASS_2021_46_1_a6/}
}
TY  - JOUR
AU  - Richard D. Carmichael
AU  - Stevan Pilipović
AU  - Jasson Vindas
TI  - Boundary values, integral transforms, and growth of vector valued Hardy functions
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2021
SP  - 115 
EP  -  129
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2021_46_1_a6/
ID  - BASS_2021_46_1_a6
ER  - 
%0 Journal Article
%A Richard D. Carmichael
%A Stevan Pilipović
%A Jasson Vindas
%T Boundary values, integral transforms, and growth of vector valued Hardy functions
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2021
%P 115 - 129
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2021_46_1_a6/
%F BASS_2021_46_1_a6
Richard D. Carmichael; Stevan Pilipović; Jasson Vindas. Boundary values, integral transforms, and growth of vector valued Hardy functions. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 46 (2021) no. 1. http://geodesic.mathdoc.fr/item/BASS_2021_46_1_a6/