Bounded linear and compact operators between the Hahn space and spaces of strongly summable and bounded sequences
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 45 (2020) no. 1 Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Voir la notice de l'article

We establish the characterisations of the classes of bounded linear operators from the generalised Hahn sequence space $h_{d}$, where $d$ is an unbounded monotone increasing sequence of positive real numbers, into the spaces \wop, \wcp\hspace*{0.5pt} and \wip\hspace*{0.5pt} of sequences that are strongly summable to zero, strongly summable and strongly bounded by the Cesàro method of order one and index $p$ for $1\le p\infty$. Furthermore, we prove estimates for the Hausdorff measure of noncompactness of bounded linear operators from $h_{d}$ into \wcp, and identities for the Hausdorff measure of noncompactness of bounded linear operators from $h_{d}$ to \wop. We use these results to characterise the classes of compact operators from $h_{d}$ to \wcp\hspace*{0.5pt} and \wop. Finally, we provide an example for some applications of our results and visualisations in crystallography.
@article{BASS_2020_45_1_a1,
     author = {Eberhard Malkowsky and Vladimir Rako\v{c}evi\'c and Vesna Veli\v{c}kovi\'c},
     title = {Bounded linear and compact operators between the {Hahn} space and spaces of strongly summable and bounded sequences},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {25 - 41},
     year = {2020},
     volume = {45},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BASS_2020_45_1_a1/}
}
TY  - JOUR
AU  - Eberhard Malkowsky
AU  - Vladimir Rakočević
AU  - Vesna Veličković
TI  - Bounded linear and compact operators between the Hahn space and spaces of strongly summable and bounded sequences
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2020
SP  - 25 
EP  -  41
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BASS_2020_45_1_a1/
ID  - BASS_2020_45_1_a1
ER  - 
%0 Journal Article
%A Eberhard Malkowsky
%A Vladimir Rakočević
%A Vesna Veličković
%T Bounded linear and compact operators between the Hahn space and spaces of strongly summable and bounded sequences
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2020
%P 25 - 41
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/BASS_2020_45_1_a1/
%F BASS_2020_45_1_a1
Eberhard Malkowsky; Vladimir Rakočević; Vesna Veličković. Bounded linear and compact operators between the Hahn space and spaces of strongly summable and bounded sequences. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 45 (2020) no. 1. http://geodesic.mathdoc.fr/item/BASS_2020_45_1_a1/