Asymptotically Almost Periodic and Asymptotically Almost Automorphic Solutions of Abstract Degenerate Multi-Term Fractional Differential Inclusions With Riemann-Liouville Derivatives
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 44 (2019), p. 55 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we investigate the functional analytical approach for seeking of solutions to the following abstract multi-term fractional differential inclusion: \[ {\mathcal B}D_t^{lpha_{n}} u(t)+um_{j=1}^{n-1}{{\mathcal A}_{j}}D_t^{lpha_{j}}u(t)ı{\mathcal A}D_t^{lpha}u(t)+f(t), \quad tı(0,au),ag{*} \] where $n\in{\mathbb N}\setminus\{1\}$, ${\mathcal A}$, ${\mathcal B}$ and ${\mathcal A}_{j}$ are multivalued linear operators on a complex Banach space $X$ $(1\leq j\leq n-1)$, $0\leq\alpha_1\cdots\alpha_{n}$, $0\leq\alpha\alpha_n$, $0\tau\leq \infty$, $f(t)$ is an $X$-valued function, and $D_{t}^{\alpha}$ denotes the Riemann--Liouville fractional derivative of order $\alpha$ (see Ph.D. Thesis by E. Bazhlekova, Eindhoven University of Technology, 2001). We introduce and analyze several different types of solutions and degenerate $k$-regularized $(C_{1},C_{2})$-existence and uniqueness (propagation) families for $(*)$. Asymptotically almost periodic and asymptotically almost automorphic solutions of $(*)$ are sought in the case that ${\mathcal B}=I$ $($the identity operator on $X)$, $A_{j}\in L(X)$ for $1\leq j\leq n-1$ and ${\mathcal A}$ is a convenable chosen translation of a $C$-almost sectorial multivalued linear operator.
Classification : 44A35, 42A75, 47D06, 34G25, 35R11
Keywords: abstract multi-term fractional differential inclusions, Riemann-Liouville fractional derivatives, asymptotical almost periodicity, asymptotical almost automorphy, abstract Volterra integro-differential inclusions
@article{BASS_2019_44_a3,
     author = {Marko Kosti\'c},
     title = {Asymptotically {Almost} {Periodic} and {Asymptotically}  {Almost} {Automorphic} {Solutions} of {Abstract}  {Degenerate} {Multi-Term} {Fractional} {Differential}  {Inclusions} {With} {Riemann-Liouville} {Derivatives}},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {55 },
     publisher = {mathdoc},
     volume = {44},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASS_2019_44_a3/}
}
TY  - JOUR
AU  - Marko Kostić
TI  - Asymptotically Almost Periodic and Asymptotically  Almost Automorphic Solutions of Abstract  Degenerate Multi-Term Fractional Differential  Inclusions With Riemann-Liouville Derivatives
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2019
SP  - 55 
VL  - 44
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2019_44_a3/
LA  - en
ID  - BASS_2019_44_a3
ER  - 
%0 Journal Article
%A Marko Kostić
%T Asymptotically Almost Periodic and Asymptotically  Almost Automorphic Solutions of Abstract  Degenerate Multi-Term Fractional Differential  Inclusions With Riemann-Liouville Derivatives
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2019
%P 55 
%V 44
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2019_44_a3/
%G en
%F BASS_2019_44_a3
Marko Kostić. Asymptotically Almost Periodic and Asymptotically  Almost Automorphic Solutions of Abstract  Degenerate Multi-Term Fractional Differential  Inclusions With Riemann-Liouville Derivatives. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 44 (2019), p. 55 . http://geodesic.mathdoc.fr/item/BASS_2019_44_a3/