Certain Sums Over Ordinates of Zeta Zeros III
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 44 (2019), p. 47
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The upper bound
\[
ıt_2^T|G(\hf+\I t)|^2ṭ l Tog^2T
\]
is proved, where initially $G(s) = \sum\limits_{\g>0}\g^{-s}$.
Here $\g$ denotes ordinates of complex zeros of the Riemann zeta-function $\z(s)$.
This coincides with the lower bound for the integral in question.
Classification :
11M06
Keywords: Riemann zeta-function, sums over ordinates, mean square estimates
Keywords: Riemann zeta-function, sums over ordinates, mean square estimates
@article{BASS_2019_44_a2,
author = {Aleksandar Ivi\'c},
title = {Certain {Sums} {Over} {Ordinates} of {Zeta} {Zeros} {III}},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {47 },
year = {2019},
volume = {44},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASS_2019_44_a2/}
}
Aleksandar Ivić. Certain Sums Over Ordinates of Zeta Zeros III. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 44 (2019), p. 47 . http://geodesic.mathdoc.fr/item/BASS_2019_44_a2/