Algebraic Distance Between Submodules
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 44 (2019) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We investigate the algebraic distance between closed and orthogonaly complemented submodules of a Hilbert $C^*$-module, which is defined as the norm of a difference of corresponding orthogonal projections. Some results are proved using $2\times2$ decompositions of adjointable operators.
@article{BASS_2019_44_1_a4,
author = {Dragan S. Djordjevi\'c},
title = {Algebraic {Distance} {Between} {Submodules}},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {75 - 89},
year = {2019},
volume = {44},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BASS_2019_44_1_a4/}
}
TY - JOUR AU - Dragan S. Djordjević TI - Algebraic Distance Between Submodules JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2019 SP - 75 EP - 89 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2019_44_1_a4/ ID - BASS_2019_44_1_a4 ER -
Dragan S. Djordjević. Algebraic Distance Between Submodules. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 44 (2019) no. 1. http://geodesic.mathdoc.fr/item/BASS_2019_44_1_a4/