Certain Sums Over Ordinates of Zeta Zeros III
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 44 (2019) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The upper bound
\[
ıt_2^T|G(\hf+\I t)|^2ṭ l Tog^2T
\]
is proved, where initially $G(s) = \sum\limits_{\g>0}\g^{-s}$.
Here $\g$ denotes ordinates of complex zeros of the Riemann zeta-function $\z(s)$.
This coincides with the lower bound for the integral in question.
@article{BASS_2019_44_1_a2,
author = {Aleksandar Ivi\'c},
title = {Certain {Sums} {Over} {Ordinates} of {Zeta} {Zeros} {III}},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {47 - 53},
year = {2019},
volume = {44},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BASS_2019_44_1_a2/}
}
TY - JOUR AU - Aleksandar Ivić TI - Certain Sums Over Ordinates of Zeta Zeros III JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2019 SP - 47 EP - 53 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2019_44_1_a2/ ID - BASS_2019_44_1_a2 ER -
Aleksandar Ivić. Certain Sums Over Ordinates of Zeta Zeros III. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 44 (2019) no. 1. http://geodesic.mathdoc.fr/item/BASS_2019_44_1_a2/