Wave-front sets in non-quasianalytic setting for Fourier-Lebesgue and modulation spaces
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 43 (2018) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We define and study wave-front sets for weighted Fourier-Lebesgue spaces when the weights are moderate with respect to associated functions for general sequences $\{ M_p\} $ which satisfy Komatsu's conditions $(M.1) - (M.3)'$. In particular, when $\{ M_p\} $ is the Gevrey sequence $(M_p = p!^s$, $s>1)$ we recover some previously observed results. Furthermore, we consider wave-front sets for modulation spaces in the same setting, and prove the invariance property related to the Fourier-Lebesgue type wave-front sets.
@article{BASS_2018_43_1_a6,
     author = {Nenad Teofanov},
     title = {Wave-front sets in non-quasianalytic setting for {Fourier-Lebesgue} and modulation spaces},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {81 - 111},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/BASS_2018_43_1_a6/}
}
TY  - JOUR
AU  - Nenad Teofanov
TI  - Wave-front sets in non-quasianalytic setting for Fourier-Lebesgue and modulation spaces
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2018
SP  - 81 
EP  -  111
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2018_43_1_a6/
ID  - BASS_2018_43_1_a6
ER  - 
%0 Journal Article
%A Nenad Teofanov
%T Wave-front sets in non-quasianalytic setting for Fourier-Lebesgue and modulation spaces
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2018
%P 81 - 111
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2018_43_1_a6/
%F BASS_2018_43_1_a6
Nenad Teofanov. Wave-front sets in non-quasianalytic setting for Fourier-Lebesgue and modulation spaces. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 43 (2018) no. 1. http://geodesic.mathdoc.fr/item/BASS_2018_43_1_a6/