Note on Irregular Graphs
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 43 (2018) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G$ be a graph with vertex set $\mathbf V(G)$ and edge set $\mathbf E(G)$.
For $v \in \mathbf V(G)$, by $d_G(v)$ is denoted the degree of the vertex $v$.
A graph in which not all vertices have equal degrees is said to be irregular.
Different quantitative measures of irregularity have been proposed, of
which the Albertson index $irr(G) = \sum_{uv \in \mathbf E(G)} |d_G(u)-d_G(v)|$
is the most popular. We compare $irr(G)$ with the recently introduced sigma-index
$\sigma(G) = \sum_{uv \in \mathbf E(G)} [d_G(u)-d_G(v)]^2$ and show that
in the general case these are incomparable. Graphs in which $|d_G(u)-d_G(v)|=1$
holds for all $uv \in \mathbf E(G)$ are called stepwise irregular $($SI$)$. Several
methods for constructing SI graphs are described.
@article{BASS_2018_43_1_a1,
author = {Ivan Gutman and Tam\'as R\'eti},
title = {Note on {Irregular} {Graphs}},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {5 - 16},
year = {2018},
volume = {43},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BASS_2018_43_1_a1/}
}
Ivan Gutman; Tamás Réti. Note on Irregular Graphs. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 43 (2018) no. 1. http://geodesic.mathdoc.fr/item/BASS_2018_43_1_a1/