Generalized Laplace transform of locally integrable functions defined on $[0,\infty)$
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 42 (2017), p. 41 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In $[$Bull. Cl. Sci. Math. Nat. Sci. Math. {\bf40} $(2015),\ 99-113]$ we defined the Laplace transform on a bounded interval $[0,b]$, denoted by $^0{\cal L}$, using some ideas of H. Komatsu $[$J. Fac. Sci. Univ. Tokyo, IA, {\bf34} {\rm(1987), 805--820]} and $[$Structure of solutions of differential equations $($Katata/Kyoto, $1995)$, pp. {\rm 227--252}, World Sci. Publishing, River Edge, NJ, {\rm1996]}. %(\cite{Kom} and \cite{Kom1}). We use this definition to extend it to the space of locally integrable functions defined on $[0,\infty)$, which is a wider class then functions $L$ used by G. Doetsch $[$Handbuch der Lalace-Transformation I, Basel -- Stuttgart, $1950-1956$, p.~$32]$. %(\cite{Do}, I, p.~32). As an application we give solutions of integral equations of the convolution type, defined on a bounded interval, or on the half-axis as well, and of equations with fractional derivatives.
Classification : 46F12
Keywords: space of locally integrable functions, Laplace transform of functions belonging to $L[0;b]$, $0
@article{BASS_2017_42_a3,
     author = {Bogoljub Stankovi\'c},
     title = {Generalized  {Laplace} transform of locally integrable functions defined on $[0,\infty)$},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {41 },
     publisher = {mathdoc},
     volume = {42},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASS_2017_42_a3/}
}
TY  - JOUR
AU  - Bogoljub Stanković
TI  - Generalized  Laplace transform of locally integrable functions defined on $[0,\infty)$
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2017
SP  - 41 
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2017_42_a3/
LA  - en
ID  - BASS_2017_42_a3
ER  - 
%0 Journal Article
%A Bogoljub Stanković
%T Generalized  Laplace transform of locally integrable functions defined on $[0,\infty)$
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2017
%P 41 
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2017_42_a3/
%G en
%F BASS_2017_42_a3
Bogoljub Stanković. Generalized  Laplace transform of locally integrable functions defined on $[0,\infty)$. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 42 (2017), p. 41 . http://geodesic.mathdoc.fr/item/BASS_2017_42_a3/