On Borderenergetic graphs
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 42 (2017), p. 9 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A graph $G$ of order $n$ is said to be borderenergetic if its energy is equal to $2n-2$ and if $G \not \cong K_n$. The first such graph was discovered in 2001, but their systematic study started only in 2015. The main hitherto established results on borderenergetic graphs are outlined, and a few new established. Borderenergetic graphs (of the same order) are mutually equienergetic. The difference in their structure indicates which structural features of a graph can vary, without affecting the value of its energy. In particular, it is shown that this applies to the number of edges.
Classification : 05C50, 05C90
Keywords: energy (of graph), borderenergetic graph, hyperenergetic graph, equienergetic graphs, spectrum (of graph)
@article{BASS_2017_42_a1,
     author = {Ivan Gutman},
     title = {On {Borderenergetic} graphs},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {9 },
     publisher = {mathdoc},
     volume = {42},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASS_2017_42_a1/}
}
TY  - JOUR
AU  - Ivan Gutman
TI  - On Borderenergetic graphs
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2017
SP  - 9 
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2017_42_a1/
LA  - en
ID  - BASS_2017_42_a1
ER  - 
%0 Journal Article
%A Ivan Gutman
%T On Borderenergetic graphs
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2017
%P 9 
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2017_42_a1/
%G en
%F BASS_2017_42_a1
Ivan Gutman. On Borderenergetic graphs. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 42 (2017), p. 9 . http://geodesic.mathdoc.fr/item/BASS_2017_42_a1/