On hyper-Zagreb index and coindex
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 42 (2017), p. 1 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a graph with vertex set $\mathbf V$ and edges set $\mathbf E$. By $d(v)$ is denoted the degree of its vertex $v$. Two much studied degree--based graph invariants are the first and second Zagreb indices, defined as $M_1=\sum\limits_{u \in \mathbf V} d(u)^2$ and $M_2 = \sum\limits_{uv \in \mathbf E} d(u)\,d(v)$. A~recently proposed new invariant of this kind is the hyper--Zagreb index, defined as $HZ = \sum\limits_{uv \in \mathbf E} [d(u)+d(v)]^2$. The basic relations between this index and its coindex for a graph $G$ and its complement $\overline G$ are determined.
Classification : 05C07, 05C90
Keywords: degree (of vertex), Zagreb index, hyper-Zagreb index, coindex
@article{BASS_2017_42_a0,
     author = {Ivan Gutman},
     title = {On {hyper-Zagreb} index and coindex},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {1 },
     publisher = {mathdoc},
     volume = {42},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASS_2017_42_a0/}
}
TY  - JOUR
AU  - Ivan Gutman
TI  - On hyper-Zagreb index and coindex
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2017
SP  - 1 
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2017_42_a0/
LA  - en
ID  - BASS_2017_42_a0
ER  - 
%0 Journal Article
%A Ivan Gutman
%T On hyper-Zagreb index and coindex
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2017
%P 1 
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2017_42_a0/
%G en
%F BASS_2017_42_a0
Ivan Gutman. On hyper-Zagreb index and coindex. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 42 (2017), p. 1 . http://geodesic.mathdoc.fr/item/BASS_2017_42_a0/