Generalized Laplace transform of locally integrable functions defined on $[0,\infty)$
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 42 (2017) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In $[$Bull. Cl. Sci. Math. Nat. Sci. Math. {\bf40} $(2015),\ 99-113]$ we defined the Laplace transform on a bounded interval $[0,b]$, denoted by $^0{\cal L}$, using some ideas of H. Komatsu $[$J. Fac. Sci. Univ. Tokyo, IA, {\bf34} {\rm(1987), 805--820]} and $[$Structure of solutions of differential equations $($Katata/Kyoto, $1995)$, pp. {\rm 227--252}, World Sci. Publishing, River Edge, NJ, {\rm1996]}. %(\cite{Kom} and \cite{Kom1}). We use this definition to extend it to the space of locally integrable functions defined on $[0,\infty)$, which is a wider class then functions $L$ used by G. Doetsch $[$Handbuch der Lalace-Transformation I, Basel -- Stuttgart, $1950-1956$, p.~$32]$. %(\cite{Do}, I, p.~32). As an application we give solutions of integral equations of the convolution type, defined on a bounded interval, or on the half-axis as well, and of equations with fractional derivatives.
@article{BASS_2017_42_1_a3,
     author = {Bogoljub Stankovi\'c},
     title = {Generalized  {Laplace} transform of locally integrable functions defined on $[0,\infty)$},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {41 - 52},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/BASS_2017_42_1_a3/}
}
TY  - JOUR
AU  - Bogoljub Stanković
TI  - Generalized  Laplace transform of locally integrable functions defined on $[0,\infty)$
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2017
SP  - 41 
EP  -  52
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2017_42_1_a3/
ID  - BASS_2017_42_1_a3
ER  - 
%0 Journal Article
%A Bogoljub Stanković
%T Generalized  Laplace transform of locally integrable functions defined on $[0,\infty)$
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2017
%P 41 - 52
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2017_42_1_a3/
%F BASS_2017_42_1_a3
Bogoljub Stanković. Generalized  Laplace transform of locally integrable functions defined on $[0,\infty)$. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 42 (2017) no. 1. http://geodesic.mathdoc.fr/item/BASS_2017_42_1_a3/