Generalized Laplace transform of locally integrable functions defined on $[0,\infty)$
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 42 (2017) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In $[$Bull. Cl. Sci. Math. Nat. Sci. Math. {\bf40} $(2015),\ 99-113]$ we defined the Laplace transform on a bounded interval $[0,b]$, denoted by $^0{\cal L}$, using some ideas of H. Komatsu $[$J. Fac. Sci. Univ. Tokyo, IA, {\bf34} {\rm(1987), 805--820]} and $[$Structure of solutions of differential equations $($Katata/Kyoto, $1995)$, pp. {\rm 227--252}, World Sci. Publishing, River Edge, NJ, {\rm1996]}.
%(\cite{Kom} and \cite{Kom1}).
We use this definition to extend it to the space of locally integrable functions defined on $[0,\infty)$, which is a wider class then functions $L$ used by G. Doetsch
$[$Handbuch der Lalace-Transformation I, Basel -- Stuttgart, $1950-1956$,
p.~$32]$. %(\cite{Do}, I, p.~32).
As an application we give solutions of integral equations of the convolution type, defined on a bounded interval, or on the half-axis as well, and of equations with fractional derivatives.
@article{BASS_2017_42_1_a3,
author = {Bogoljub Stankovi\'c},
title = {Generalized {Laplace} transform of locally integrable functions defined on $[0,\infty)$},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {41 - 52},
year = {2017},
volume = {42},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BASS_2017_42_1_a3/}
}
TY - JOUR AU - Bogoljub Stanković TI - Generalized Laplace transform of locally integrable functions defined on $[0,\infty)$ JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2017 SP - 41 EP - 52 VL - 42 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2017_42_1_a3/ ID - BASS_2017_42_1_a3 ER -
%0 Journal Article %A Bogoljub Stanković %T Generalized Laplace transform of locally integrable functions defined on $[0,\infty)$ %J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles %D 2017 %P 41 - 52 %V 42 %N 1 %U http://geodesic.mathdoc.fr/item/BASS_2017_42_1_a3/ %F BASS_2017_42_1_a3
Bogoljub Stanković. Generalized Laplace transform of locally integrable functions defined on $[0,\infty)$. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 42 (2017) no. 1. http://geodesic.mathdoc.fr/item/BASS_2017_42_1_a3/