On two degree-and-distance-based graph invariants
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 41 (2016), p. 21 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a connected graph with vertex set $V(G)$. For $u,v \in V(G)$, by $d(v)$ and $d(u,v)$ are denoted the degree of the vertex $v$ and the distance between the vertices $u$ and $v$. A much studied degree--and--distance--based graph invariant is the degree distance, defined as $DD=\sum_{\{u,v\}\subseteq V(G)} [d(u)+d(v)]\,d(u,v)$. A related such invariant is $ZZ=\sum_{\{u,v\}\subseteq V(G)} [d(u) \times d(v)]\,d(u,v)$. If $G$ is a tree, then both $DD$ and $ZZ$ are linearly related with the Wiener index $W = \sum_{\{u,v\}\subseteq V(G)} d(u,v)$. We show how these relations can be extended in the case when $d(u)$ and $d(v)$ are replaced by $f(u)$ and $f(v)$, where $f$ is any function of the corresponding vertex. We also give a few remarks concerning the discovery of $DD$ and $ZZ$.
Classification : 05C07, 05C12, 05C90
Keywords: degree (of vertex), distance (in graph), degree distance (of graph), Gutman index
@article{BASS_2016_41_a1,
     author = {Ivan Gutman},
     title = {On two degree-and-distance-based graph invariants},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {21 },
     publisher = {mathdoc},
     volume = {41},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASS_2016_41_a1/}
}
TY  - JOUR
AU  - Ivan Gutman
TI  - On two degree-and-distance-based graph invariants
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2016
SP  - 21 
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2016_41_a1/
LA  - en
ID  - BASS_2016_41_a1
ER  - 
%0 Journal Article
%A Ivan Gutman
%T On two degree-and-distance-based graph invariants
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2016
%P 21 
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2016_41_a1/
%G en
%F BASS_2016_41_a1
Ivan Gutman. On two degree-and-distance-based graph invariants. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 41 (2016), p. 21 . http://geodesic.mathdoc.fr/item/BASS_2016_41_a1/