On two degree-and-distance-based graph invariants
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 41 (2016) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a connected graph with vertex set $V(G)$. For $u,v \in V(G)$, by $d(v)$ and $d(u,v)$ are denoted the degree of the vertex $v$ and the distance between the vertices $u$ and $v$. A much studied degree--and--distance--based graph invariant is the degree distance, defined as $DD=\sum_{\{u,v\}\subseteq V(G)} [d(u)+d(v)]\,d(u,v)$. A related such invariant is $ZZ=\sum_{\{u,v\}\subseteq V(G)} [d(u) \times d(v)]\,d(u,v)$. If $G$ is a tree, then both $DD$ and $ZZ$ are linearly related with the Wiener index $W = \sum_{\{u,v\}\subseteq V(G)} d(u,v)$. We show how these relations can be extended in the case when $d(u)$ and $d(v)$ are replaced by $f(u)$ and $f(v)$, where $f$ is any function of the corresponding vertex. We also give a few remarks concerning the discovery of $DD$ and $ZZ$.
@article{BASS_2016_41_1_a1,
     author = {Ivan Gutman},
     title = {On two degree-and-distance-based graph invariants},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {21 - 31},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2016},
     url = {http://geodesic.mathdoc.fr/item/BASS_2016_41_1_a1/}
}
TY  - JOUR
AU  - Ivan Gutman
TI  - On two degree-and-distance-based graph invariants
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2016
SP  - 21 
EP  -  31
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2016_41_1_a1/
ID  - BASS_2016_41_1_a1
ER  - 
%0 Journal Article
%A Ivan Gutman
%T On two degree-and-distance-based graph invariants
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2016
%P 21 - 31
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2016_41_1_a1/
%F BASS_2016_41_1_a1
Ivan Gutman. On two degree-and-distance-based graph invariants. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 41 (2016) no. 1. http://geodesic.mathdoc.fr/item/BASS_2016_41_1_a1/