On two degree-and-distance-based graph invariants
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 41 (2016) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G$ be a connected graph with vertex set
$V(G)$. For $u,v \in V(G)$, by $d(v)$ and $d(u,v)$ are denoted the
degree of the vertex $v$ and the distance between the vertices $u$
and $v$. A much studied degree--and--distance--based graph
invariant is the degree distance, defined as
$DD=\sum_{\{u,v\}\subseteq V(G)} [d(u)+d(v)]\,d(u,v)$. A related
such invariant is $ZZ=\sum_{\{u,v\}\subseteq V(G)} [d(u) \times
d(v)]\,d(u,v)$. If $G$ is a tree, then both $DD$ and $ZZ$ are
linearly related with the Wiener index $W = \sum_{\{u,v\}\subseteq
V(G)} d(u,v)$. We show how these relations can be extended in the
case when $d(u)$ and $d(v)$ are replaced by $f(u)$ and $f(v)$,
where $f$ is any function of the corresponding vertex. We also
give a few remarks concerning the discovery of $DD$ and $ZZ$.
@article{BASS_2016_41_1_a1,
author = {Ivan Gutman},
title = {On two degree-and-distance-based graph invariants},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {21 - 31},
year = {2016},
volume = {41},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BASS_2016_41_1_a1/}
}
TY - JOUR AU - Ivan Gutman TI - On two degree-and-distance-based graph invariants JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2016 SP - 21 EP - 31 VL - 41 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2016_41_1_a1/ ID - BASS_2016_41_1_a1 ER -
Ivan Gutman. On two degree-and-distance-based graph invariants. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 41 (2016) no. 1. http://geodesic.mathdoc.fr/item/BASS_2016_41_1_a1/