Laplace transform of functions defined on a bounded interval
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 40 (2015) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Laplace transform $\dot{\mathcal L}$ for functions belonging to $L[0,b], \; 0 b \infty$ is defined. This definition is given by using the idea of H. Komatsu $[$J. Fac. Sci. Univ. Tokyo, IA, {\bf34} {\rm(1987), 805--820]} and $[$Structure of solutions of differential equations $($Katata/Kyoto, $1995)$, pp. {\rm 227--252}, World Sci. Publishing, River Edge, NJ, {\rm1996]}.
for Laplace hyperfunctions. As an application of $\dot{\mathcal L}$ we solve an equation with fractional derivative and an integral equation of the first kind of convolution type.
@article{BASS_2015_40_1_a6,
author = {Bogoljub Stankovi\'c},
title = {Laplace transform of functions defined on a bounded interval},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {99 - 113},
year = {2015},
volume = {40},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BASS_2015_40_1_a6/}
}
TY - JOUR AU - Bogoljub Stanković TI - Laplace transform of functions defined on a bounded interval JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2015 SP - 99 EP - 113 VL - 40 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2015_40_1_a6/ ID - BASS_2015_40_1_a6 ER -
%0 Journal Article %A Bogoljub Stanković %T Laplace transform of functions defined on a bounded interval %J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles %D 2015 %P 99 - 113 %V 40 %N 1 %U http://geodesic.mathdoc.fr/item/BASS_2015_40_1_a6/ %F BASS_2015_40_1_a6
Bogoljub Stanković. Laplace transform of functions defined on a bounded interval. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 40 (2015) no. 1. http://geodesic.mathdoc.fr/item/BASS_2015_40_1_a6/