Laplace transform of functions defined on a bounded interval
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 40 (2015) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Laplace transform $\dot{\mathcal L}$ for functions belonging to $L[0,b], \; 0 b \infty$ is defined. This definition is given by using the idea of H. Komatsu $[$J. Fac. Sci. Univ. Tokyo, IA, {\bf34} {\rm(1987), 805--820]} and $[$Structure of solutions of differential equations $($Katata/Kyoto, $1995)$, pp. {\rm 227--252}, World Sci. Publishing, River Edge, NJ, {\rm1996]}. for Laplace hyperfunctions. As an application of $\dot{\mathcal L}$ we solve an equation with fractional derivative and an integral equation of the first kind of convolution type.
@article{BASS_2015_40_1_a6,
     author = {Bogoljub Stankovi\'c},
     title = {Laplace transform of functions defined on a bounded interval},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {99 - 113},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2015},
     url = {http://geodesic.mathdoc.fr/item/BASS_2015_40_1_a6/}
}
TY  - JOUR
AU  - Bogoljub Stanković
TI  - Laplace transform of functions defined on a bounded interval
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2015
SP  - 99 
EP  -  113
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2015_40_1_a6/
ID  - BASS_2015_40_1_a6
ER  - 
%0 Journal Article
%A Bogoljub Stanković
%T Laplace transform of functions defined on a bounded interval
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2015
%P 99 - 113
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2015_40_1_a6/
%F BASS_2015_40_1_a6
Bogoljub Stanković. Laplace transform of functions defined on a bounded interval. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 40 (2015) no. 1. http://geodesic.mathdoc.fr/item/BASS_2015_40_1_a6/