Laplace transform of functions defined on a bounded interval
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 40 (2015) no. 1

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Laplace transform $\dot{\mathcal L}$ for functions belonging to $L[0,b], \; 0 b \infty$ is defined. This definition is given by using the idea of H. Komatsu $[$J. Fac. Sci. Univ. Tokyo, IA, {\bf34} {\rm(1987), 805--820]} and $[$Structure of solutions of differential equations $($Katata/Kyoto, $1995)$, pp. {\rm 227--252}, World Sci. Publishing, River Edge, NJ, {\rm1996]}. for Laplace hyperfunctions. As an application of $\dot{\mathcal L}$ we solve an equation with fractional derivative and an integral equation of the first kind of convolution type.
@article{BASS_2015_40_1_a6,
     author = {Bogoljub Stankovi\'c},
     title = {Laplace transform of functions defined on a bounded interval},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {99 - 113},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2015},
     url = {http://geodesic.mathdoc.fr/item/BASS_2015_40_1_a6/}
}
TY  - JOUR
AU  - Bogoljub Stanković
TI  - Laplace transform of functions defined on a bounded interval
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2015
SP  - 99 
EP  -  113
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2015_40_1_a6/
ID  - BASS_2015_40_1_a6
ER  - 
%0 Journal Article
%A Bogoljub Stanković
%T Laplace transform of functions defined on a bounded interval
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2015
%P 99 - 113
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2015_40_1_a6/
%F BASS_2015_40_1_a6
Bogoljub Stanković. Laplace transform of functions defined on a bounded interval. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 40 (2015) no. 1. http://geodesic.mathdoc.fr/item/BASS_2015_40_1_a6/