On the origin of two degree - based topological indices
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 39 (2014) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a graph with vertex sex $V(G)$ and edge set $E(G)$. Two much studied and in chemistry much applied graph invariants are the {ı first Zagreb index\/} $M_1=\sum\limits_{x \in V(G)} d(x)^2$ and the {ı second Zagreb index\/} $M_2=\sum\limits_{xy \in E(G)} d(x)\,d(y)$, where $d(x)$ is the degree of the vertex $x \in V(G)$. We analyze the way how these invariants were conceived in the 1970s and clarify some missing details.
@article{BASS_2014_39_1_a2,
     author = {I. Gutman},
     title = {On the origin of two degree - based topological indices},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {39 - 52},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/BASS_2014_39_1_a2/}
}
TY  - JOUR
AU  - I. Gutman
TI  - On the origin of two degree - based topological indices
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2014
SP  - 39 
EP  -  52
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2014_39_1_a2/
ID  - BASS_2014_39_1_a2
ER  - 
%0 Journal Article
%A I. Gutman
%T On the origin of two degree - based topological indices
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2014
%P 39 - 52
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2014_39_1_a2/
%F BASS_2014_39_1_a2
I. Gutman. On the origin of two degree - based topological indices. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 39 (2014) no. 1. http://geodesic.mathdoc.fr/item/BASS_2014_39_1_a2/