$(a,k)$-regularized $(C_{1},C_{2})$-existence and uniqueness families
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 38 (2013), p. 9
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we introduce and analyze the class of $(a,k)$-regularized $(C_{1},C_{2})$-existence and uniqueness families in the setting of sequentially complete locally convex spaces. The classes of $(a,k)$-regularized $C_{1}$-existence families and $(a,k)$-regularized $C_{2}$-uniqueness families are also defined and considered. The subordination principle as well as many other structural characterizations of (local) exponentially equicontinuous $(a,k)$-regularized $(C_{1},C_{2})$-existence and uniqueness families are proved.
Classification :
47D03 47D06 47D99
Keywords: $(a,k)$-regularized $(C_{1},C_{2})$-existence and uniqueness families, $(a,k)$-regularized $C$-resolvent families, abstract Volterra equations
Keywords: $(a,k)$-regularized $(C_{1},C_{2})$-existence and uniqueness families, $(a,k)$-regularized $C$-resolvent families, abstract Volterra equations
@article{BASS_2013_38_a1,
author = {M. Kosti\'c},
title = {$(a,k)$-regularized $(C_{1},C_{2})$-existence and uniqueness families},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {9 },
year = {2013},
volume = {38},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASS_2013_38_a1/}
}
TY - JOUR
AU - M. Kostić
TI - $(a,k)$-regularized $(C_{1},C_{2})$-existence and uniqueness families
JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY - 2013
SP - 9
VL - 38
UR - http://geodesic.mathdoc.fr/item/BASS_2013_38_a1/
LA - en
ID - BASS_2013_38_a1
ER -
M. Kostić. $(a,k)$-regularized $(C_{1},C_{2})$-existence and uniqueness families. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 38 (2013), p. 9 . http://geodesic.mathdoc.fr/item/BASS_2013_38_a1/