Hyperenergetic graphs and cyclomatic number
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 35 (2010) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a graph with $n$ vertices and $m$ edges. Then its cyclomatic number is $c=m-n+1$\,. If $\lambda_1,\lambda_2,\ldots,\lambda_n$ are the eigenvalues of $G$\,, then its energy is $E(G)=\sum_{i=1}^n |\lambda_i|$\,. The graph $G$ is said to be hyperenergetic if $E(G)>E(K_n)=2n-2$\,. It is known [Nikiforov, J. Math. Anal. Appl. {\bf 327} (2007) 735-738] that almost all graphs are hyperenergetic. We now show that for any $c\infty$\,, there is only a finite number of hyperenergetic graphs with cyclomatic number $c$\,. In particular, there are no hyperenergetic graphs with $c \leq 8$\,.
@article{BASS_2010_35_1_a0,
     author = {X. Shen and Y. Hou and I. Gutman and X. Hui},
     title = {Hyperenergetic graphs and  cyclomatic number},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {1 - 8},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/BASS_2010_35_1_a0/}
}
TY  - JOUR
AU  - X. Shen
AU  - Y. Hou
AU  - I. Gutman
AU  - X. Hui
TI  - Hyperenergetic graphs and  cyclomatic number
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2010
SP  - 1 
EP  -  8
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2010_35_1_a0/
ID  - BASS_2010_35_1_a0
ER  - 
%0 Journal Article
%A X. Shen
%A Y. Hou
%A I. Gutman
%A X. Hui
%T Hyperenergetic graphs and  cyclomatic number
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2010
%P 1 - 8
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2010_35_1_a0/
%F BASS_2010_35_1_a0
X. Shen; Y. Hou; I. Gutman; X. Hui. Hyperenergetic graphs and  cyclomatic number. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 35 (2010) no. 1. http://geodesic.mathdoc.fr/item/BASS_2010_35_1_a0/