Weak solutions to differential equations with left and right fractional derivatives defined on ${\Bbb R}$
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 34 (2009) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We treat linear differential equations
containing both left and right Riemann-Liouville fractional
derivatives arising from fractional variational problems. We use
the Fourier transform method to obtain weak solution to the
problem. Regularity of such solution is examined and the
conditions for the existence of classical solution are stated.
@article{BASS_2009_34_1_a3,
author = {T. M. Atanackovi\'c and S. Pilipovi\'c and B. Stankovi\'c},
title = {Weak solutions to differential equations with left and right fractional derivatives defined on ${\Bbb R}$},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {75 - 88},
year = {2009},
volume = {34},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BASS_2009_34_1_a3/}
}
TY - JOUR
AU - T. M. Atanacković
AU - S. Pilipović
AU - B. Stanković
TI - Weak solutions to differential equations with left and right fractional derivatives defined on ${\Bbb R}$
JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY - 2009
SP - 75
EP - 88
VL - 34
IS - 1
UR - http://geodesic.mathdoc.fr/item/BASS_2009_34_1_a3/
ID - BASS_2009_34_1_a3
ER -
%0 Journal Article
%A T. M. Atanacković
%A S. Pilipović
%A B. Stanković
%T Weak solutions to differential equations with left and right fractional derivatives defined on ${\Bbb R}$
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2009
%P 75 - 88
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/BASS_2009_34_1_a3/
%F BASS_2009_34_1_a3
T. M. Atanacković; S. Pilipović; B. Stanković. Weak solutions to differential equations with left and right fractional derivatives defined on ${\Bbb R}$. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 34 (2009) no. 1. http://geodesic.mathdoc.fr/item/BASS_2009_34_1_a3/