Quadrature processes - development and new directions
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 33 (2008), p. 11
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We present a survey on quadrature processes,
beginning with Newton's idea of approximate integration and Gauss'
discovery of his famous quadrature method, as well as significant
contributions of Jacobi and Christoffel. Beside the stable
construction of Gauss-Christoffel quadratures for classical and
non-classical weights we give some recent applications in the
summation of slowly convergent series and moment-preserving spline
approximation. Also, we consider quadratures of the maximal degree
of precision with multiple nodes, as well as a more general concept
of orthogonality with respect to a given linear moment functional
and corresponding quadratures of Gaussian type. A short account of
non-standard quadratures of Gaussian type is also included. Finally,
we mention the Gaussian integration which is exact on the space of
Muntz polynomials.
Classification :
41A55 33C45 33C47 42C05 65D30 65D32
Keywords: Quadrature process, Newton-Cotes formula, Gauss-Christoffel quadrature formula, Orthogonal polynomials, Moments, Moment functional, Three-term recurrence relation, Weight, Node, Multiple nodes, Summation of series, Moment-preserving spline approximation, Non-standard quadratures, Muntz polynomials
Keywords: Quadrature process, Newton-Cotes formula, Gauss-Christoffel quadrature formula, Orthogonal polynomials, Moments, Moment functional, Three-term recurrence relation, Weight, Node, Multiple nodes, Summation of series, Moment-preserving spline approximation, Non-standard quadratures, Muntz polynomials
@article{BASS_2008_33_a1,
author = {G. V. Milovanovi\'c},
title = {Quadrature processes - development and new directions},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {11 },
year = {2008},
volume = {33},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASS_2008_33_a1/}
}
TY - JOUR AU - G. V. Milovanović TI - Quadrature processes - development and new directions JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2008 SP - 11 VL - 33 UR - http://geodesic.mathdoc.fr/item/BASS_2008_33_a1/ LA - en ID - BASS_2008_33_a1 ER -
G. V. Milovanović. Quadrature processes - development and new directions. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 33 (2008), p. 11 . http://geodesic.mathdoc.fr/item/BASS_2008_33_a1/