Note on Laplacian energy of graphs
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 33 (2008), p. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G$ be an $(n,m)$-graph and
$\mu_1,\mu_2,\ldots,\mu_n$ its Laplacian eigenvalues. The Laplacian
energy $LE$ of $G$ is defined as $\sum\limits_{i=1}^n |\mu_i -
2m/n|$ . Some new bounds for $LE$ are presented, and some results
from the paper B. Zhou, I. Gutman, Bull. Acad. Serbe Sci. Arts (Cl.
Math. Natur.) bf 134 (2007) 1--11 are improved and extended.
@article{BASS_2008_33_a0,
author = {H. Fath-Tabar and A. R. Ashrafi and I. Gutman},
title = {Note on {Laplacian} energy of graphs},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {1 },
year = {2008},
volume = {33},
zbl = {1199.05217},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASS_2008_33_a0/}
}
TY - JOUR AU - H. Fath-Tabar AU - A. R. Ashrafi AU - I. Gutman TI - Note on Laplacian energy of graphs JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2008 SP - 1 VL - 33 UR - http://geodesic.mathdoc.fr/item/BASS_2008_33_a0/ LA - en ID - BASS_2008_33_a0 ER -
H. Fath-Tabar; A. R. Ashrafi; I. Gutman. Note on Laplacian energy of graphs. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 33 (2008), p. 1 . http://geodesic.mathdoc.fr/item/BASS_2008_33_a0/