Note on Laplacian energy of graphs
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 33 (2008) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be an $(n,m)$-graph and $\mu_1,\mu_2,\ldots,\mu_n$ its Laplacian eigenvalues. The Laplacian energy $LE$ of $G$ is defined as $\sum\limits_{i=1}^n |\mu_i - 2m/n|$ . Some new bounds for $LE$ are presented, and some results from the paper B. Zhou, I. Gutman, Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.) bf 134 (2007) 1--11 are improved and extended.
@article{BASS_2008_33_1_a0,
     author = {H. Fath-Tabar and A. R. Ashrafi and I. Gutman},
     title = {Note on {Laplacian} energy of graphs},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {1 - 10},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2008},
     zbl = {1199.05217},
     url = {http://geodesic.mathdoc.fr/item/BASS_2008_33_1_a0/}
}
TY  - JOUR
AU  - H. Fath-Tabar
AU  - A. R. Ashrafi
AU  - I. Gutman
TI  - Note on Laplacian energy of graphs
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2008
SP  - 1 
EP  -  10
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2008_33_1_a0/
ID  - BASS_2008_33_1_a0
ER  - 
%0 Journal Article
%A H. Fath-Tabar
%A A. R. Ashrafi
%A I. Gutman
%T Note on Laplacian energy of graphs
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2008
%P 1 - 10
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2008_33_1_a0/
%F BASS_2008_33_1_a0
H. Fath-Tabar; A. R. Ashrafi; I. Gutman. Note on Laplacian energy of graphs. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 33 (2008) no. 1. http://geodesic.mathdoc.fr/item/BASS_2008_33_1_a0/