Subconvexity for the Riemann zeta-function and the divisor problem
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 32 (2007), p. 13
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A simple proof of the classical subconvexity
bound $\zt \ll_\e t^{1/6+\e}$ for the Riemann zeta-function is
given, and estimation by more refined techniques is discussed. The
connections between the Dirichlet divisor problem and the mean
square of $|\zt|$ are analysed.
Classification :
11M06 11N37
Keywords: The Riemann zeta-function, subconvexity, the divisor problem, mean square of $|\zt|$, exponent pairs, Bombieri--Iwaniec method
Keywords: The Riemann zeta-function, subconvexity, the divisor problem, mean square of $|\zt|$, exponent pairs, Bombieri--Iwaniec method
@article{BASS_2007_32_a1,
author = {M. N. Huxley and A. Ivi\'c},
title = {Subconvexity for the {Riemann} zeta-function and the divisor problem},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {13 },
year = {2007},
volume = {32},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASS_2007_32_a1/}
}
TY - JOUR AU - M. N. Huxley AU - A. Ivić TI - Subconvexity for the Riemann zeta-function and the divisor problem JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2007 SP - 13 VL - 32 UR - http://geodesic.mathdoc.fr/item/BASS_2007_32_a1/ LA - en ID - BASS_2007_32_a1 ER -
%0 Journal Article %A M. N. Huxley %A A. Ivić %T Subconvexity for the Riemann zeta-function and the divisor problem %J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles %D 2007 %P 13 %V 32 %U http://geodesic.mathdoc.fr/item/BASS_2007_32_a1/ %G en %F BASS_2007_32_a1
M. N. Huxley; A. Ivić. Subconvexity for the Riemann zeta-function and the divisor problem. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 32 (2007), p. 13 . http://geodesic.mathdoc.fr/item/BASS_2007_32_a1/