Estrada index of iterated line graphs
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 32 (2007) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If $\lambda_1,\lambda_2,\ldots,\lambda_n$ are the eigenvalues of a graph $G$ , then the Estrada index of $G$ is $EE(G) = \sum\limits_{i=1}^n e^{\lambda_i}$ . If $L(G) = L^1(G)$ is the line graph of $G$ , then the iterated line graphs of $G$ are defined as $L^k(G) = L(L^{k-1}(G))$ for $k=2,3,\ldots$ . Let $G$ be a regular graph of order $n$ and degree $r$ . We show that $EE(L^k(G)) = a_k(r)\,EE(G) + n\,b_k(r)$ , where the multipliers $a_k(r)$ and $b_k(r)$ depend only on the parameters $r$ and $k$ . The main properties of $a_k(r)$ and $b_k(r)$ are established.
@article{BASS_2007_32_1_a2,
     author = {Tatjana Aleksi\'c and I. Gutman and M. Petrovi\'c},
     title = {Estrada index of iterated line graphs},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {33 - 41},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2007},
     zbl = {1224.05291},
     url = {http://geodesic.mathdoc.fr/item/BASS_2007_32_1_a2/}
}
TY  - JOUR
AU  - Tatjana Aleksić
AU  - I. Gutman
AU  - M. Petrović
TI  - Estrada index of iterated line graphs
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2007
SP  - 33 
EP  -  41
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2007_32_1_a2/
ID  - BASS_2007_32_1_a2
ER  - 
%0 Journal Article
%A Tatjana Aleksić
%A I. Gutman
%A M. Petrović
%T Estrada index of iterated line graphs
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2007
%P 33 - 41
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2007_32_1_a2/
%F BASS_2007_32_1_a2
Tatjana Aleksić; I. Gutman; M. Petrović. Estrada index of iterated line graphs. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 32 (2007) no. 1. http://geodesic.mathdoc.fr/item/BASS_2007_32_1_a2/