Estrada index of iterated line graphs
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 32 (2007) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
If $\lambda_1,\lambda_2,\ldots,\lambda_n$ are
the eigenvalues of a graph $G$ , then the Estrada index of $G$ is
$EE(G) = \sum\limits_{i=1}^n e^{\lambda_i}$ . If $L(G) = L^1(G)$ is
the line graph of $G$ , then the iterated line graphs of $G$ are
defined as $L^k(G) = L(L^{k-1}(G))$ for $k=2,3,\ldots$ . Let $G$ be
a regular graph of order $n$ and degree $r$ . We show that
$EE(L^k(G)) = a_k(r)\,EE(G) + n\,b_k(r)$ , where the multipliers
$a_k(r)$ and $b_k(r)$ depend only on the parameters $r$ and $k$ .
The main properties of $a_k(r)$ and $b_k(r)$ are established.
@article{BASS_2007_32_1_a2,
author = {Tatjana Aleksi\'c and I. Gutman and M. Petrovi\'c},
title = {Estrada index of iterated line graphs},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {33 - 41},
year = {2007},
volume = {32},
number = {1},
zbl = {1224.05291},
url = {http://geodesic.mathdoc.fr/item/BASS_2007_32_1_a2/}
}
TY - JOUR AU - Tatjana Aleksić AU - I. Gutman AU - M. Petrović TI - Estrada index of iterated line graphs JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2007 SP - 33 EP - 41 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2007_32_1_a2/ ID - BASS_2007_32_1_a2 ER -
%0 Journal Article %A Tatjana Aleksić %A I. Gutman %A M. Petrović %T Estrada index of iterated line graphs %J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles %D 2007 %P 33 - 41 %V 32 %N 1 %U http://geodesic.mathdoc.fr/item/BASS_2007_32_1_a2/ %F BASS_2007_32_1_a2
Tatjana Aleksić; I. Gutman; M. Petrović. Estrada index of iterated line graphs. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 32 (2007) no. 1. http://geodesic.mathdoc.fr/item/BASS_2007_32_1_a2/