Nordhaus-gaddum-type relations for the energy and Laplacian energy of graphs
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 32 (2007) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\overline{G}$ denote the complement of the graph $G$ . If $I(G)$ is some invariant of $G$ , then relations (identities, bounds, and similar) pertaining to $I(G)+I(\overline{G})$ are said to be of Nordhaus-Gaddum type. A number of lower and upper bounds of Nordhaus-Gaddum type are obtained for the energy and Laplacian energy of graphs. Also some new relations for the Laplacian graph energy are established.
@article{BASS_2007_32_1_a0,
     author = {B. Zhou and I. Gutman},
     title = {Nordhaus-gaddum-type relations for the energy and {Laplacian} energy of graphs},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {1 - 11},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2007},
     url = {http://geodesic.mathdoc.fr/item/BASS_2007_32_1_a0/}
}
TY  - JOUR
AU  - B. Zhou
AU  - I. Gutman
TI  - Nordhaus-gaddum-type relations for the energy and Laplacian energy of graphs
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2007
SP  - 1 
EP  -  11
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2007_32_1_a0/
ID  - BASS_2007_32_1_a0
ER  - 
%0 Journal Article
%A B. Zhou
%A I. Gutman
%T Nordhaus-gaddum-type relations for the energy and Laplacian energy of graphs
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2007
%P 1 - 11
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2007_32_1_a0/
%F BASS_2007_32_1_a0
B. Zhou; I. Gutman. Nordhaus-gaddum-type relations for the energy and Laplacian energy of graphs. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 32 (2007) no. 1. http://geodesic.mathdoc.fr/item/BASS_2007_32_1_a0/