Inequalities between distance-based graph polynomials
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006), p. 57
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In a recent paper {\rm [ I. Gutman,
Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.) {\bf 131} (2005)
1--7]}, the Hosoya polynomial $H=H(G,\lambda)$ of a graph $G$ ,
and two related distance--based polynomials $H_1=H_1(G,\lambda)$
and $H_2=H_2(G,\lambda)$ were examined. We now show that
$\max\{\delta H_1 - \delta^2 H , \Delta H_1 - \Delta^2 H\}
�eq H_2 �eq \Delta H_1 - \delta \Delta H$ holds for all
graphs $G$ and for all $\lambda \geq 0$ , where $\delta$ and
$\Delta$ are the smallest and greatest vertex degree in $G$ . The
answer to the question which of the terms
$\delta\,H_1 - \delta^2\,H$ and $\Delta\,H_1 - \Delta^2\,H$ is
greater, depends on the graph $G$ and on the value of the variable
$\lambda$ . We find a number of particular solutions of this
problem.
Classification :
05C12 05C05
Keywords: Graph polynomial, distance (in graph)
Keywords: Graph polynomial, distance (in graph)
@article{BASS_2006_31_a4,
author = {I. Gutman and Olga Miljkovi\'c and B. Zhou and M. Petrovi\'c},
title = {Inequalities between distance-based graph polynomials},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {57 },
year = {2006},
volume = {31},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASS_2006_31_a4/}
}
TY - JOUR AU - I. Gutman AU - Olga Miljković AU - B. Zhou AU - M. Petrović TI - Inequalities between distance-based graph polynomials JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2006 SP - 57 VL - 31 UR - http://geodesic.mathdoc.fr/item/BASS_2006_31_a4/ LA - en ID - BASS_2006_31_a4 ER -
%0 Journal Article %A I. Gutman %A Olga Miljković %A B. Zhou %A M. Petrović %T Inequalities between distance-based graph polynomials %J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles %D 2006 %P 57 %V 31 %U http://geodesic.mathdoc.fr/item/BASS_2006_31_a4/ %G en %F BASS_2006_31_a4
I. Gutman; Olga Miljković; B. Zhou; M. Petrović. Inequalities between distance-based graph polynomials. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006), p. 57 . http://geodesic.mathdoc.fr/item/BASS_2006_31_a4/