Inequalities between distance-based graph polynomials
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006), p. 57 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In a recent paper {\rm [ I. Gutman, Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.) {\bf 131} (2005) 1--7]}, the Hosoya polynomial $H=H(G,\lambda)$ of a graph $G$ , and two related distance--based polynomials $H_1=H_1(G,\lambda)$ and $H_2=H_2(G,\lambda)$ were examined. We now show that $\max\{\delta H_1 - \delta^2 H , \Delta H_1 - \Delta^2 H\} �eq H_2 �eq \Delta H_1 - \delta \Delta H$ holds for all graphs $G$ and for all $\lambda \geq 0$ , where $\delta$ and $\Delta$ are the smallest and greatest vertex degree in $G$ . The answer to the question which of the terms $\delta\,H_1 - \delta^2\,H$ and $\Delta\,H_1 - \Delta^2\,H$ is greater, depends on the graph $G$ and on the value of the variable $\lambda$ . We find a number of particular solutions of this problem.
Classification : 05C12 05C05
Keywords: Graph polynomial, distance (in graph)
@article{BASS_2006_31_a4,
     author = {I. Gutman and Olga Miljkovi\'c and B. Zhou and M. Petrovi\'c},
     title = {Inequalities between distance-based graph polynomials},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {57 },
     publisher = {mathdoc},
     volume = {31},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASS_2006_31_a4/}
}
TY  - JOUR
AU  - I. Gutman
AU  - Olga Miljković
AU  - B. Zhou
AU  - M. Petrović
TI  - Inequalities between distance-based graph polynomials
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2006
SP  - 57 
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2006_31_a4/
LA  - en
ID  - BASS_2006_31_a4
ER  - 
%0 Journal Article
%A I. Gutman
%A Olga Miljković
%A B. Zhou
%A M. Petrović
%T Inequalities between distance-based graph polynomials
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2006
%P 57 
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2006_31_a4/
%G en
%F BASS_2006_31_a4
I. Gutman; Olga Miljković; B. Zhou; M. Petrović. Inequalities between distance-based graph polynomials. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006), p. 57 . http://geodesic.mathdoc.fr/item/BASS_2006_31_a4/