Graphs with least eigenvalue -2 attaining a convex quadratic upper bound for the stability number
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006), p. 41
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we study the conditions under
which the stability number of line graphs, generalized line graphs
and exceptional graphs attains a convex quadratic programming
upper bound. In regular graphs this bound is reduced to the well
known Hoffman bound. Some vertex subsets inducing subgraphs with
regularity properties are analyzed. Based on an observation
concerning the Hoffman bound a new construction of regular
exceptional graphs is provided.
Classification :
05C50
Keywords: graph theory, graph spectra, line graph , quadratic programming, stability number
Keywords: graph theory, graph spectra, line graph , quadratic programming, stability number
@article{BASS_2006_31_a3,
author = {D. M. Cardoso and D. Cvetkovi\'c},
title = {Graphs with least eigenvalue -2 attaining a convex quadratic upper bound for the stability number},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {41 },
year = {2006},
volume = {31},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASS_2006_31_a3/}
}
TY - JOUR AU - D. M. Cardoso AU - D. Cvetković TI - Graphs with least eigenvalue -2 attaining a convex quadratic upper bound for the stability number JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2006 SP - 41 VL - 31 UR - http://geodesic.mathdoc.fr/item/BASS_2006_31_a3/ LA - en ID - BASS_2006_31_a3 ER -
%0 Journal Article %A D. M. Cardoso %A D. Cvetković %T Graphs with least eigenvalue -2 attaining a convex quadratic upper bound for the stability number %J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles %D 2006 %P 41 %V 31 %U http://geodesic.mathdoc.fr/item/BASS_2006_31_a3/ %G en %F BASS_2006_31_a3
D. M. Cardoso; D. Cvetković. Graphs with least eigenvalue -2 attaining a convex quadratic upper bound for the stability number. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006), p. 41 . http://geodesic.mathdoc.fr/item/BASS_2006_31_a3/