Inhomogeneous Gevrey ultradistributions and Cauchy problem
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006), p. 175
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
After a short survey on Gevrey functions and ultradistributions, we present the inhomogeneous Gevrey
ultradistributions introduced recently by the authors in collaboration with
A. Morando, cf. [7].
Their definition depends on a given weight function $\lambda$ , satisfying
suitable hypotheses, according to Liess-Rodino [16]. As an application, we define $(s,\lambda)$-hyperbolic
partial differential operators with constant coefficients (for $s>1$), and
prove for them the well-posedness of
the Cauchy problem in the frame of the corresponding inhomogeneous ultradistributions.
This sets in the dual spaces a similar result of Calvo [4] in the
inhomogeneous Gevrey classes, that in turn extends a previous result of Larsson
[14] for weakly hyperbolic operators in standard homogeneous Gevrey
classes.
Classification :
46F05 35E15 35S05
Keywords: Gevrey ultradistributions, inhomogeneous Gevrey classes, Cauchy problem, microlocal analysis
Keywords: Gevrey ultradistributions, inhomogeneous Gevrey classes, Cauchy problem, microlocal analysis
@article{BASS_2006_31_a13,
author = {Daniela Calvo and L. Rodino},
title = {Inhomogeneous {Gevrey} ultradistributions and {Cauchy} problem},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {175 },
year = {2006},
volume = {31},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASS_2006_31_a13/}
}
TY - JOUR AU - Daniela Calvo AU - L. Rodino TI - Inhomogeneous Gevrey ultradistributions and Cauchy problem JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2006 SP - 175 VL - 31 UR - http://geodesic.mathdoc.fr/item/BASS_2006_31_a13/ LA - en ID - BASS_2006_31_a13 ER -
%0 Journal Article %A Daniela Calvo %A L. Rodino %T Inhomogeneous Gevrey ultradistributions and Cauchy problem %J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles %D 2006 %P 175 %V 31 %U http://geodesic.mathdoc.fr/item/BASS_2006_31_a13/ %G en %F BASS_2006_31_a13
Daniela Calvo; L. Rodino. Inhomogeneous Gevrey ultradistributions and Cauchy problem. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006), p. 175 . http://geodesic.mathdoc.fr/item/BASS_2006_31_a13/