On positivity properties of fundamental cardinal polysplines
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Polysplines on strips of order $p$ are natural generalizations of univariate splines. In [3] and [4] interpolation results for cardinal polysplines on strips have been proven. In this paper the following problems will be addressed: (i) positivity of the fundamental polyspline on the strip $\left[ -1,1\right] \times {\Bbb R}^{n}$, and (ii) uniqueness of interpolation for polynomially bounded cardinal polysplines.
Keywords: Cardinal splines, L-splines, fundamental spline, polyharmonic functions, polysplines
@article{BASS_2006_31_1_a8,
     author = {H. Render},
     title = {On positivity properties of fundamental cardinal polysplines},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {101 - 114},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2006},
     zbl = {1119.41008},
     url = {http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a8/}
}
TY  - JOUR
AU  - H. Render
TI  - On positivity properties of fundamental cardinal polysplines
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2006
SP  - 101 
EP  -  114
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a8/
ID  - BASS_2006_31_1_a8
ER  - 
%0 Journal Article
%A H. Render
%T On positivity properties of fundamental cardinal polysplines
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2006
%P 101 - 114
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a8/
%F BASS_2006_31_1_a8
H. Render. On positivity properties of fundamental cardinal polysplines. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1. http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a8/