Generalized solutions to singular initial-boundary hyperbolic problems with non-lipshitz nonlinearities
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove the existence and uniqueness of global generalized solutions in a Colombeau algebra of generalized functions to semilinear hyperbolic systems with nonlinear boundary conditions. Our analysis covers the case of non-Lipschitz nonlinearities both in the differential equations and in the boundary conditions. We admit strong singularities in the differential equations as well as in the initial and boundary conditions.
@article{BASS_2006_31_1_a7,
     author = {Irina Kmit},
     title = {Generalized solutions to singular initial-boundary hyperbolic problems with non-lipshitz nonlinearities},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {87 - 99},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a7/}
}
TY  - JOUR
AU  - Irina Kmit
TI  - Generalized solutions to singular initial-boundary hyperbolic problems with non-lipshitz nonlinearities
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2006
SP  - 87 
EP  -  99
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a7/
ID  - BASS_2006_31_1_a7
ER  - 
%0 Journal Article
%A Irina Kmit
%T Generalized solutions to singular initial-boundary hyperbolic problems with non-lipshitz nonlinearities
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2006
%P 87 - 99
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a7/
%F BASS_2006_31_1_a7
Irina Kmit. Generalized solutions to singular initial-boundary hyperbolic problems with non-lipshitz nonlinearities. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1. http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a7/