Generalized solutions to singular initial-boundary hyperbolic problems with non-lipshitz nonlinearities
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove the existence and uniqueness of
global generalized solutions in a Colombeau algebra of generalized
functions to semilinear hyperbolic systems with nonlinear
boundary conditions.
Our analysis covers the case of non-Lipschitz nonlinearities both in
the differential equations and in the boundary conditions. We admit
strong singularities in the differential equations as well as in the
initial and boundary conditions.
@article{BASS_2006_31_1_a7,
author = {Irina Kmit},
title = {Generalized solutions to singular initial-boundary hyperbolic problems with non-lipshitz nonlinearities},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {87 - 99},
year = {2006},
volume = {31},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a7/}
}
TY - JOUR AU - Irina Kmit TI - Generalized solutions to singular initial-boundary hyperbolic problems with non-lipshitz nonlinearities JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2006 SP - 87 EP - 99 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a7/ ID - BASS_2006_31_1_a7 ER -
%0 Journal Article %A Irina Kmit %T Generalized solutions to singular initial-boundary hyperbolic problems with non-lipshitz nonlinearities %J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles %D 2006 %P 87 - 99 %V 31 %N 1 %U http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a7/ %F BASS_2006_31_1_a7
Irina Kmit. Generalized solutions to singular initial-boundary hyperbolic problems with non-lipshitz nonlinearities. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1. http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a7/