Positivity in twisted convolution algebra and Fourier modulation spaces
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let ${\mathcal W}^{p,q}$ be the Fourier modulation space ${\mathscr F}M^{p,q}$ and let $*_\sigma$ be the twisted convolution. If $a\in {\mathscr D}'$ such that $(a*_\sigma \fy ,\fy)\ge 0$ for every $\fy \in C_0^\infty$, and $\chi \in \mathscr S$ such that $\chi (0)\neq 0$, then we prove that $\chi a\in {\mathcal W}^{p,\infty}$ iff $a\in {\mathcal W}^{p,\infty}$. We also present some extensions to the case when weighted Fourier modulation spaces are used.
Keywords: twisted convolution, Fourier modulation, positivity, continuity
@article{BASS_2006_31_1_a6,
     author = {J. Toft},
     title = {Positivity in twisted convolution algebra and {Fourier} modulation spaces},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {75 - 86},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2006},
     zbl = {1119.47040},
     url = {http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a6/}
}
TY  - JOUR
AU  - J. Toft
TI  - Positivity in twisted convolution algebra and Fourier modulation spaces
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2006
SP  - 75 
EP  -  86
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a6/
ID  - BASS_2006_31_1_a6
ER  - 
%0 Journal Article
%A J. Toft
%T Positivity in twisted convolution algebra and Fourier modulation spaces
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2006
%P 75 - 86
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a6/
%F BASS_2006_31_1_a6
J. Toft. Positivity in twisted convolution algebra and Fourier modulation spaces. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1. http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a6/