Inequalities between distance-based graph polynomials
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In a recent paper {\rm [ I. Gutman, Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.) {\bf 131} (2005) 1--7]}, the Hosoya polynomial $H=H(G,\lambda)$ of a graph $G$ , and two related distance--based polynomials $H_1=H_1(G,\lambda)$ and $H_2=H_2(G,\lambda)$ were examined. We now show that $$\max\{\delta H_1 - \delta^2 H , \Delta H_1 - \Delta^2 H\} łeq H_2 łeq \Delta H_1 - \delta \Delta H$$ holds for all graphs $G$ and for all $\lambda \geq 0$ , where $\delta$ and $\Delta$ are the smallest and greatest vertex degree in $G$ . The answer to the question which of the terms $\delta\,H_1 - \delta^2\,H$ and $\Delta\,H_1 - \Delta^2\,H$ is greater, depends on the graph $G$ and on the value of the variable $\lambda$ . We find a number of particular solutions of this problem.
@article{BASS_2006_31_1_a4,
     author = {I. Gutman and Olga Miljkovi\'c and B. Zhou and M. Petrovi\'c},
     title = {Inequalities between distance-based graph polynomials},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {57 - 68},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a4/}
}
TY  - JOUR
AU  - I. Gutman
AU  - Olga Miljković
AU  - B. Zhou
AU  - M. Petrović
TI  - Inequalities between distance-based graph polynomials
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2006
SP  - 57 
EP  -  68
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a4/
ID  - BASS_2006_31_1_a4
ER  - 
%0 Journal Article
%A I. Gutman
%A Olga Miljković
%A B. Zhou
%A M. Petrović
%T Inequalities between distance-based graph polynomials
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2006
%P 57 - 68
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a4/
%F BASS_2006_31_1_a4
I. Gutman; Olga Miljković; B. Zhou; M. Petrović. Inequalities between distance-based graph polynomials. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1. http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a4/