Graphs with least eigenvalue -2 attaining a convex quadratic upper bound for the stability number
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we study the conditions under which the stability number of line graphs, generalized line graphs and exceptional graphs attains a convex quadratic programming upper bound. In regular graphs this bound is reduced to the well known Hoffman bound. Some vertex subsets inducing subgraphs with regularity properties are analyzed. Based on an observation concerning the Hoffman bound a new construction of regular exceptional graphs is provided.
@article{BASS_2006_31_1_a3,
     author = {D. M. Cardoso and D. Cvetkovi\'c},
     title = {Graphs with least eigenvalue -2 attaining a convex quadratic upper bound for the stability number},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {41 - 55},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a3/}
}
TY  - JOUR
AU  - D. M. Cardoso
AU  - D. Cvetković
TI  - Graphs with least eigenvalue -2 attaining a convex quadratic upper bound for the stability number
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2006
SP  - 41 
EP  -  55
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a3/
ID  - BASS_2006_31_1_a3
ER  - 
%0 Journal Article
%A D. M. Cardoso
%A D. Cvetković
%T Graphs with least eigenvalue -2 attaining a convex quadratic upper bound for the stability number
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2006
%P 41 - 55
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a3/
%F BASS_2006_31_1_a3
D. M. Cardoso; D. Cvetković. Graphs with least eigenvalue -2 attaining a convex quadratic upper bound for the stability number. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1. http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a3/