Inhomogeneous Gevrey ultradistributions and Cauchy problem
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

After a short survey on Gevrey functions and ultradistributions, we present the inhomogeneous Gevrey ultradistributions introduced recently by the authors in collaboration with A. Morando, cf. [7]. Their definition depends on a given weight function $\lambda$ , satisfying suitable hypotheses, according to Liess-Rodino [16]. As an application, we define $(s,\lambda)$-hyperbolic partial differential operators with constant coefficients (for $s>1$), and prove for them the well-posedness of the Cauchy problem in the frame of the corresponding inhomogeneous ultradistributions. This sets in the dual spaces a similar result of Calvo [4] in the inhomogeneous Gevrey classes, that in turn extends a previous result of Larsson [14] for weakly hyperbolic operators in standard homogeneous Gevrey classes.
@article{BASS_2006_31_1_a13,
     author = {Daniela Calvo and L. Rodino},
     title = {Inhomogeneous {Gevrey} ultradistributions and {Cauchy} problem},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {175 - 186},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a13/}
}
TY  - JOUR
AU  - Daniela Calvo
AU  - L. Rodino
TI  - Inhomogeneous Gevrey ultradistributions and Cauchy problem
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2006
SP  - 175 
EP  -  186
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a13/
ID  - BASS_2006_31_1_a13
ER  - 
%0 Journal Article
%A Daniela Calvo
%A L. Rodino
%T Inhomogeneous Gevrey ultradistributions and Cauchy problem
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2006
%P 175 - 186
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a13/
%F BASS_2006_31_1_a13
Daniela Calvo; L. Rodino. Inhomogeneous Gevrey ultradistributions and Cauchy problem. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1. http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a13/