Inhomogeneous Gevrey ultradistributions and Cauchy problem
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

After a short survey on Gevrey functions and ultradistributions, we present the inhomogeneous Gevrey ultradistributions introduced recently by the authors in collaboration with A. Morando, cf. [7]. Their definition depends on a given weight function $\lambda$ , satisfying suitable hypotheses, according to Liess-Rodino [16]. As an application, we define $(s,\lambda)$-hyperbolic partial differential operators with constant coefficients (for $s>1$), and prove for them the well-posedness of the Cauchy problem in the frame of the corresponding inhomogeneous ultradistributions. This sets in the dual spaces a similar result of Calvo [4] in the inhomogeneous Gevrey classes, that in turn extends a previous result of Larsson [14] for weakly hyperbolic operators in standard homogeneous Gevrey classes.
@article{BASS_2006_31_1_a13,
     author = {Daniela Calvo and L. Rodino},
     title = {Inhomogeneous {Gevrey} ultradistributions and {Cauchy} problem},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {175 - 186},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a13/}
}
TY  - JOUR
AU  - Daniela Calvo
AU  - L. Rodino
TI  - Inhomogeneous Gevrey ultradistributions and Cauchy problem
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2006
SP  - 175 
EP  -  186
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a13/
ID  - BASS_2006_31_1_a13
ER  - 
%0 Journal Article
%A Daniela Calvo
%A L. Rodino
%T Inhomogeneous Gevrey ultradistributions and Cauchy problem
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2006
%P 175 - 186
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a13/
%F BASS_2006_31_1_a13
Daniela Calvo; L. Rodino. Inhomogeneous Gevrey ultradistributions and Cauchy problem. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1. http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a13/