Regular nonlinear generalized functions and applications
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We present new types of regularity for Colombeau nonlinear generalized
functions, based on the notion of regular growth with respect to the
regularizing parameter of the simplified model. This generalizes the notion of
${\mathcal G}^{\infty}$-regularity introduced by M. Oberguggenberger. As a
first application, we show that these new spaces are useful in a problem of
representation of linear maps by integral operators, giving an analogon to
Schwartz kernel theorem in the framework of nonlinear generalized functions.
Secondly, we remark that these new regularities can be characterized, for
compactly supported generalized functions, by a property of their Fourier
transform. This opens the door to microlocal analysis of singularities of
generalized functions, with respect to these regularities.
Keywords:
Colombeau generalized functions, Schwartz kernel theorem, rapidly decreasing generalized functions, Fourier transform, microlocal analysis
@article{BASS_2006_31_1_a12,
author = {A. Delcroix},
title = {Regular nonlinear generalized functions and applications},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {163 - 174},
year = {2006},
volume = {31},
number = {1},
zbl = {1119.46035},
url = {http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a12/}
}
TY - JOUR AU - A. Delcroix TI - Regular nonlinear generalized functions and applications JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2006 SP - 163 EP - 174 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a12/ ID - BASS_2006_31_1_a12 ER -
A. Delcroix. Regular nonlinear generalized functions and applications. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 31 (2006) no. 1. http://geodesic.mathdoc.fr/item/BASS_2006_31_1_a12/