On the spectral radius of bicyclic graphs
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 30 (2005) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $K_3$ and $K_3'$ be two complete graphs of order 3 with disjoint vertex sets. Let $B_n^{\ast}(0)$ be the 5-vertex graph, obtained by identifying a vertex of $K_3$ with a vertex of $K_3'$ . Let $B_n^{\ast\ast}(0)$ be the 4-vertex graph, obtained by identifying two vertices of $K_3$ each with a vertex of $K_3'$ . Let $B_n^{\ast}(k)$ be graph of order $n$ , obtained by attaching $k$ paths of almost equal length to the vertex of degree 4 of $B_n^{\ast}(0)$ . Let $B_n^{\ast\ast}(k)$ be the graph of order $n$ , obtained by attaching $k$ paths of almost equal length to a vertex of degree 3 of $B_n^{\ast\ast}(0)$ . Let ${\cal B}_n(k)$ be the set of all connected bicyclic graphs of order $n$ , possessing $k$ pendent vertices. One of the authors recently proved that among the elements of ${\cal B}_n(k)$ , either $B_n^{\ast}(k)$ or $B_n^{\ast\ast}(k)$ have the greatest spectral radius. We now show that for $k \geq 1$ and $n \geq k+5$ , among the elements of ${\cal B}_n(k)$ , the graph $B_n^{\ast}(k)$ has the greatest spectral radius.
Keywords: spectrum (of graph), spectral radius (of graph), bicyclic graphs, extremal graphs
@article{BASS_2005_30_1_a7,
     author = {M. Petrovi\'c and I. Gutman and Shu-Guang Guo},
     title = {On the spectral radius of bicyclic graphs},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {93 - 99},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2005},
     zbl = {1120.05310},
     url = {http://geodesic.mathdoc.fr/item/BASS_2005_30_1_a7/}
}
TY  - JOUR
AU  - M. Petrović
AU  - I. Gutman
AU  - Shu-Guang Guo
TI  - On the spectral radius of bicyclic graphs
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2005
SP  - 93 
EP  -  99
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2005_30_1_a7/
ID  - BASS_2005_30_1_a7
ER  - 
%0 Journal Article
%A M. Petrović
%A I. Gutman
%A Shu-Guang Guo
%T On the spectral radius of bicyclic graphs
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2005
%P 93 - 99
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2005_30_1_a7/
%F BASS_2005_30_1_a7
M. Petrović; I. Gutman; Shu-Guang Guo. On the spectral radius of bicyclic graphs. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 30 (2005) no. 1. http://geodesic.mathdoc.fr/item/BASS_2005_30_1_a7/