On the spectral radius of bicyclic graphs
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 30 (2005) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $K_3$ and $K_3'$ be two complete graphs
of order 3 with disjoint vertex sets. Let $B_n^{\ast}(0)$ be the
5-vertex graph, obtained by identifying a vertex of $K_3$ with a
vertex of $K_3'$ . Let $B_n^{\ast\ast}(0)$ be the 4-vertex graph,
obtained by identifying two vertices of $K_3$ each with a vertex
of $K_3'$ . Let $B_n^{\ast}(k)$ be graph of order $n$ , obtained
by attaching $k$ paths of almost equal length to the vertex of
degree 4 of $B_n^{\ast}(0)$ . Let $B_n^{\ast\ast}(k)$ be the
graph of order $n$ , obtained by attaching $k$ paths of almost
equal length to a vertex of degree 3 of $B_n^{\ast\ast}(0)$ . Let
${\cal B}_n(k)$ be the set of all connected bicyclic graphs of
order $n$ , possessing $k$ pendent vertices. One of the authors
recently proved that among the elements of ${\cal B}_n(k)$ ,
either $B_n^{\ast}(k)$ or $B_n^{\ast\ast}(k)$ have the greatest
spectral radius. We now show that for $k \geq 1$ and $n \geq
k+5$ , among the elements of ${\cal B}_n(k)$ , the graph
$B_n^{\ast}(k)$ has the greatest spectral radius.
@article{BASS_2005_30_1_a7,
author = {M. Petrovi\'c and I. Gutman and Shu-Guang Guo},
title = {On the spectral radius of bicyclic graphs},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {93 - 99},
year = {2005},
volume = {30},
number = {1},
zbl = {1120.05310},
url = {http://geodesic.mathdoc.fr/item/BASS_2005_30_1_a7/}
}
TY - JOUR AU - M. Petrović AU - I. Gutman AU - Shu-Guang Guo TI - On the spectral radius of bicyclic graphs JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2005 SP - 93 EP - 99 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2005_30_1_a7/ ID - BASS_2005_30_1_a7 ER -
%0 Journal Article %A M. Petrović %A I. Gutman %A Shu-Guang Guo %T On the spectral radius of bicyclic graphs %J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles %D 2005 %P 93 - 99 %V 30 %N 1 %U http://geodesic.mathdoc.fr/item/BASS_2005_30_1_a7/ %F BASS_2005_30_1_a7
M. Petrović; I. Gutman; Shu-Guang Guo. On the spectral radius of bicyclic graphs. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 30 (2005) no. 1. http://geodesic.mathdoc.fr/item/BASS_2005_30_1_a7/