Some relations between distance-based polynomials of trees
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 30 (2005) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The Hosoya polynomial $H(G,\lambda)$ of a
graph $G$ has the property that its first derivative at
$\lambda=1$ is equal to the Wiener index. Sometime ago two
distance-based graph invariants were studied -- the Schultz index
$S$ and its modification $S^\ast$ . We construct distance--based
graph polynomials $H_1(G,\lambda)$ and $H_2(G,\lambda)$ , such
that their first derivatives at $\lambda=1$ are, respectively,
equal to $S$ and $S^\ast$ . In case of trees, $H_1(G,\lambda)$
and $H_2(G,\lambda)$ are related with $H(G,\lambda)$ .
@article{BASS_2005_30_1_a0,
author = {I. Gutman},
title = {Some relations between distance-based polynomials of trees},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {1 - 7},
year = {2005},
volume = {30},
number = {1},
zbl = {1120.05304},
url = {http://geodesic.mathdoc.fr/item/BASS_2005_30_1_a0/}
}
TY - JOUR AU - I. Gutman TI - Some relations between distance-based polynomials of trees JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2005 SP - 1 EP - 7 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2005_30_1_a0/ ID - BASS_2005_30_1_a0 ER -
I. Gutman. Some relations between distance-based polynomials of trees. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 30 (2005) no. 1. http://geodesic.mathdoc.fr/item/BASS_2005_30_1_a0/