Generalized inverse of the Laplacian matrix and some applications
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 29 (2004) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The generalized inverse $L^\dagger$ of the
Laplacian matrix of a connected graph is examined and some of its
properties are established. In some physical and chemical
considerations the quantity $r_{ij} = (L^\dagger)_{ii} +
(L^\dagger)_{jj} - (L^\dagger)_{ij} - (L^\dagger)_{ji}$ is
encountered; it is called resistance distance. Based on the
results obtained for $L^\dagger$ we prove some previously known
and deduce some new properties of the resistance distance.
Keywords:
Laplacian matrix, Laplacian eigenvector (of graph), Laplacian eigenvalue (of graph), resistance distance
@article{BASS_2004_29_1_a1,
author = {I. Gutman and W. Xiao},
title = {Generalized inverse of the {Laplacian} matrix and some applications},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {15 - 23},
year = {2004},
volume = {29},
number = {1},
zbl = {1079.05055},
url = {http://geodesic.mathdoc.fr/item/BASS_2004_29_1_a1/}
}
TY - JOUR AU - I. Gutman AU - W. Xiao TI - Generalized inverse of the Laplacian matrix and some applications JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2004 SP - 15 EP - 23 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2004_29_1_a1/ ID - BASS_2004_29_1_a1 ER -
%0 Journal Article %A I. Gutman %A W. Xiao %T Generalized inverse of the Laplacian matrix and some applications %J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles %D 2004 %P 15 - 23 %V 29 %N 1 %U http://geodesic.mathdoc.fr/item/BASS_2004_29_1_a1/ %F BASS_2004_29_1_a1
I. Gutman; W. Xiao. Generalized inverse of the Laplacian matrix and some applications. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 29 (2004) no. 1. http://geodesic.mathdoc.fr/item/BASS_2004_29_1_a1/