Some properties of Laplacian eigenvectors
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 28 (2003) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G$ be a graph on $n$ vertices, $\bar G$
its complement and $K_n$ the complete graph on $n$ vertices. We
show that if $G$ is connected, then any Laplacian eigenvector of
$G$ is also a Laplacian eigenvector of $\bar G$ and of $K_n$ .
This result holds, with a slight modification, also for
disconnected graphs. We establish also some other results, all
showing that the structural information contained in the Laplacian
eigenvectors is rather limited. An analogy between the theories of
Laplacian and ordinary graph spectra is pointed out.
Keywords:
Laplacian spectrum, Laplacian matrix, Laplacian eigenvector (of graph), Laplacian eigenvalue (of graph)
@article{BASS_2003_28_1_a0,
author = {I. Gutman},
title = {Some properties of {Laplacian} eigenvectors},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {1 - 6},
year = {2003},
volume = {28},
number = {1},
zbl = {1051.05059},
url = {http://geodesic.mathdoc.fr/item/BASS_2003_28_1_a0/}
}
I. Gutman. Some properties of Laplacian eigenvectors. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 28 (2003) no. 1. http://geodesic.mathdoc.fr/item/BASS_2003_28_1_a0/