Tetracyclic harmonic graphs
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 27 (2002), p. 19 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A graph $G$ on $n$ vertices $v_1,v_2,\ldots,v_n$ is said to be harmonic if $(d(v_1),d(v_2),\ldots,d(v_n))^t$ is an eigenvector of its $(0,1)$-a�acency matrix, where $d(v_i)$ is the degree (= number of first neighbors) of the vertex $v_i \ , \ i=1,2,\ldots,n$ . Earlier all acyclic, unicyclic, bicyclic and tricyclic harmonic graphs were characterized. We now show that there are 2 regular and 18 non-regular connected tetracyclic harmonic graphs and determine their structures.
Classification : 05C50 05C75
Keywords: Harmonic graphs, Spectra (of graphs), Walks
@article{BASS_2002_27_a1,
     author = {B. Borovi\'canin and I. Gutman and M. Petrovi\'c},
     title = {Tetracyclic harmonic graphs},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {19 },
     publisher = {mathdoc},
     volume = {27},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASS_2002_27_a1/}
}
TY  - JOUR
AU  - B. Borovićanin
AU  - I. Gutman
AU  - M. Petrović
TI  - Tetracyclic harmonic graphs
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2002
SP  - 19 
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASS_2002_27_a1/
LA  - en
ID  - BASS_2002_27_a1
ER  - 
%0 Journal Article
%A B. Borovićanin
%A I. Gutman
%A M. Petrović
%T Tetracyclic harmonic graphs
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2002
%P 19 
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASS_2002_27_a1/
%G en
%F BASS_2002_27_a1
B. Borovićanin; I. Gutman; M. Petrović. Tetracyclic harmonic graphs. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 27 (2002), p. 19 . http://geodesic.mathdoc.fr/item/BASS_2002_27_a1/