Tetracyclic harmonic graphs
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 27 (2002) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A graph $G$ on $n$ vertices
$v_1,v_2,\ldots,v_n$ is said to be harmonic if
$(d(v_1),d(v_2),\ldots,d(v_n))^t$ is an eigenvector of its
$(0,1)$-ađacency matrix, where $d(v_i)$ is the degree (=
number of first neighbors) of the vertex $v_i \ , \
i=1,2,\ldots,n$ . Earlier all acyclic, unicyclic, bicyclic
and tricyclic harmonic graphs were characterized. We now show that
there are 2 regular and 18 non-regular connected tetracyclic
harmonic graphs and determine their structures.
@article{BASS_2002_27_1_a1,
author = {B. Borovi\'canin and I. Gutman and M. Petrovi\'c},
title = {Tetracyclic harmonic graphs},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {19 - 31},
year = {2002},
volume = {27},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BASS_2002_27_1_a1/}
}
TY - JOUR AU - B. Borovićanin AU - I. Gutman AU - M. Petrović TI - Tetracyclic harmonic graphs JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2002 SP - 19 EP - 31 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2002_27_1_a1/ ID - BASS_2002_27_1_a1 ER -
B. Borovićanin; I. Gutman; M. Petrović. Tetracyclic harmonic graphs. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 27 (2002) no. 1. http://geodesic.mathdoc.fr/item/BASS_2002_27_1_a1/