The maximal exceptional graphs with maximal degree less than 28
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 26 (2001) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A graph is said to be {\em exceptional} if it is
connected, has least eigenvalue greater
than or equal to $-2$, and is not a generalized line graph. Such graphs
are known to be representable in the root system $E_8$. The 473 maximal
exceptional graphs were found initially by computer, and the 467 with
maximal degree
$28$ have subsequently been characterized. Here we use constructions in
$E_8$ to prove directly
that there are just six maximal exceptional graphs with maximal degree less
than 28.
@article{BASS_2001_26_1_a6,
author = {D. Cvetkovi\'c and P. Rowlinson and S.K. Simi\'c},
title = {The maximal exceptional graphs with maximal degree less than 28},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {115 - 131},
year = {2001},
volume = {26},
number = {1},
zbl = {0997.05060},
url = {http://geodesic.mathdoc.fr/item/BASS_2001_26_1_a6/}
}
TY - JOUR AU - D. Cvetković AU - P. Rowlinson AU - S.K. Simić TI - The maximal exceptional graphs with maximal degree less than 28 JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2001 SP - 115 EP - 131 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2001_26_1_a6/ ID - BASS_2001_26_1_a6 ER -
%0 Journal Article %A D. Cvetković %A P. Rowlinson %A S.K. Simić %T The maximal exceptional graphs with maximal degree less than 28 %J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles %D 2001 %P 115 - 131 %V 26 %N 1 %U http://geodesic.mathdoc.fr/item/BASS_2001_26_1_a6/ %F BASS_2001_26_1_a6
D. Cvetković; P. Rowlinson; S.K. Simić. The maximal exceptional graphs with maximal degree less than 28. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 26 (2001) no. 1. http://geodesic.mathdoc.fr/item/BASS_2001_26_1_a6/