Some spectral properties of starlike trees
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 26 (2001) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A tree is said to be starlike if exactly one
of its vertices has degree greater than two. We show that almost
all starlike trees are hyperbolic, and determine all exceptions.
If $k$ is the maximal vertex degree of a starlike tree and
$\lambda_1$ is its largest eigenvalue, then $\sqrt{k} \leq
\lambda_1 k/\sqrt{k-1}$ . A new way to characterize integral
starlike trees is put forward.
@article{BASS_2001_26_1_a5,
author = {M. Lepovi\'c and I. Gutman},
title = {Some spectral properties of starlike trees},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {107 - 113},
year = {2001},
volume = {26},
number = {1},
zbl = {0997.05059},
url = {http://geodesic.mathdoc.fr/item/BASS_2001_26_1_a5/}
}
TY - JOUR AU - M. Lepović AU - I. Gutman TI - Some spectral properties of starlike trees JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2001 SP - 107 EP - 113 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2001_26_1_a5/ ID - BASS_2001_26_1_a5 ER -
M. Lepović; I. Gutman. Some spectral properties of starlike trees. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 26 (2001) no. 1. http://geodesic.mathdoc.fr/item/BASS_2001_26_1_a5/