Asymptotic behaviour of non-autonomous Caputo fractional differential equations with a one-sided dissipative vector field
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2024), pp. 44-52

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-autonomous Caputo fractional differential equation of order $\alpha\in(0,1)$ in $\mathbb{R}^d$ with a driving system $\{\vartheta_t\}_{t\in \mathbb{R}}$ on a compact base space $P$ generates a skew-product flow on $\mathfrak{C}_{\alpha}\times P$, where $\mathfrak{C}_{\alpha}$ is the space of continuous functions $f$ $:$ $\mathbb{R}^+$ $\to$ $\mathbb{R}^d$ with a weighted norm giving uniform convergence on compact time subsets. It was shown by Cui Kloeden [3] to have an attractor when the vector field of the Caputo FDE satisfies a uniform dissipative vector field. This attractor is closed, bounded and invariant in $\mathfrak{C}_{\alpha}\times P$ and attracts bounded subsets of $\mathfrak{C}_{\alpha}$ consisting of constant initial functions. The structure of this attractor is investigated here in detail for an example with a vector field satisfying a stronger one-sided dissipative Lipschitz condition. In particular, the component sets of the attractor are shown to be singleton sets corresponding to a unique entire solution of the skew-product flow. Its evaluation on $\mathbb{R}^d$ is a unique entire solution of the Caputo FDE, which is both pullback and forward attracting.
@article{BASM_2024_1_a3,
     author = {T. S. Doan and P. E. Kloeden},
     title = {Asymptotic behaviour of non-autonomous {Caputo} fractional differential equations with a one-sided dissipative vector field},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {44--52},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2024_1_a3/}
}
TY  - JOUR
AU  - T. S. Doan
AU  - P. E. Kloeden
TI  - Asymptotic behaviour of non-autonomous Caputo fractional differential equations with a one-sided dissipative vector field
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2024
SP  - 44
EP  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2024_1_a3/
LA  - en
ID  - BASM_2024_1_a3
ER  - 
%0 Journal Article
%A T. S. Doan
%A P. E. Kloeden
%T Asymptotic behaviour of non-autonomous Caputo fractional differential equations with a one-sided dissipative vector field
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2024
%P 44-52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2024_1_a3/
%G en
%F BASM_2024_1_a3
T. S. Doan; P. E. Kloeden. Asymptotic behaviour of non-autonomous Caputo fractional differential equations with a one-sided dissipative vector field. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2024), pp. 44-52. http://geodesic.mathdoc.fr/item/BASM_2024_1_a3/