Poisson Stable Solutions of Semi-Linear Differential Equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2024), pp. 17-43

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of existence of Poisson stable (in particular, almost periodic, almost automorphic, recurrent) solutions to the semi-linear differential equation $$ x'=(A_0+A(t))x+F(t,x) $$ with unbounded closed linear operator $A_0$, bounded operators $A(t)$ and Poisson stable functions $A(t)$ and $F(t,x)$. Under some conditions we prove that there exists a unique (at least one) solution which possesses the same recurrence property as the coefficients.
@article{BASM_2024_1_a2,
     author = {David Cheban},
     title = {Poisson {Stable} {Solutions} of {Semi-Linear} {Differential} {Equations}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {17--43},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2024_1_a2/}
}
TY  - JOUR
AU  - David Cheban
TI  - Poisson Stable Solutions of Semi-Linear Differential Equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2024
SP  - 17
EP  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2024_1_a2/
LA  - en
ID  - BASM_2024_1_a2
ER  - 
%0 Journal Article
%A David Cheban
%T Poisson Stable Solutions of Semi-Linear Differential Equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2024
%P 17-43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2024_1_a2/
%G en
%F BASM_2024_1_a2
David Cheban. Poisson Stable Solutions of Semi-Linear Differential Equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2024), pp. 17-43. http://geodesic.mathdoc.fr/item/BASM_2024_1_a2/