Approximation of fixed points in convex $G$-metric spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2023), pp. 67-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we extend some fixed point results for various classes of mappings to approximating fixed points, using Mann iterative process in the context of convex $G$-metric spaces.
@article{BASM_2023_3_a4,
     author = {Nora Fetouci},
     title = {Approximation of fixed points in convex $G$-metric spaces},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {67--79},
     year = {2023},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2023_3_a4/}
}
TY  - JOUR
AU  - Nora Fetouci
TI  - Approximation of fixed points in convex $G$-metric spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 67
EP  - 79
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BASM_2023_3_a4/
LA  - en
ID  - BASM_2023_3_a4
ER  - 
%0 Journal Article
%A Nora Fetouci
%T Approximation of fixed points in convex $G$-metric spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 67-79
%N 3
%U http://geodesic.mathdoc.fr/item/BASM_2023_3_a4/
%G en
%F BASM_2023_3_a4
Nora Fetouci. Approximation of fixed points in convex $G$-metric spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2023), pp. 67-79. http://geodesic.mathdoc.fr/item/BASM_2023_3_a4/

[1] M. Aggarwal, R. Chugh and R. Kamal, “Suzuki-fixed point results in $G$-metric spaces and applications”, Int. J. Comp. Appl., 47:12 (2012), 14–17

[2] E. Karapinar and R. Agarwal, “Further fixed point results on $G$-metric spaces”, Fixed Point Theory. Appl., 154 (2013), 1–14 | MR

[3] G. Modi, B. Bhatt, “Fixed point results for weakly compatible mappings in convex $G$-metric space”, Int. J. Maths. Stat. Inven., 2:11 (2014), 34–38

[4] \sc Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, PHD Thesis, the University of Newcastle, Australia, 2005

[5] Z. Mustafa, H. Obiedat, F. Awawdeh, “Some fixed point theorem for mapping on complete $G$-metric spaces”, Fixed Point Theory. Appl., 2008 (2008), 1–12 | DOI | MR

[6] Z. Mustafa, B. Sims, “A new approach to generalized metric spaces”, J. Nonlinear and Convex Anal., 7:2 (2006), 289–297 | MR | Zbl

[7] Z. Mustafa, B. Sims, “Fixed point theorems for contractive mappings in $G$-metric spaces”, Fixed Point Theory. Appl., 2009 (2009), 1–10 | DOI | MR

[8] W. Takahashi, “A convexity in metric space and nonexpansive mappings”, Kodai Math. Sem. Rep., 22 (1970), 142–149 | DOI | MR | Zbl

[9] I. Yildirim, S. H. Khan, “Convexity in $G$-metric spaces and approximation of fixed points by Mann iterative process”, Int. J. Nonlinear Anal. Appl., 13:1 (2022), 1957–1964