Approximation of fixed points in convex $G$-metric spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2023), pp. 67-79

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we extend some fixed point results for various classes of mappings to approximating fixed points, using Mann iterative process in the context of convex $G$-metric spaces.
@article{BASM_2023_3_a4,
     author = {Nora Fetouci},
     title = {Approximation of fixed points in convex $G$-metric spaces},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {67--79},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2023_3_a4/}
}
TY  - JOUR
AU  - Nora Fetouci
TI  - Approximation of fixed points in convex $G$-metric spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 67
EP  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2023_3_a4/
LA  - en
ID  - BASM_2023_3_a4
ER  - 
%0 Journal Article
%A Nora Fetouci
%T Approximation of fixed points in convex $G$-metric spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 67-79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2023_3_a4/
%G en
%F BASM_2023_3_a4
Nora Fetouci. Approximation of fixed points in convex $G$-metric spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2023), pp. 67-79. http://geodesic.mathdoc.fr/item/BASM_2023_3_a4/